

 [image: Facelift]

 Facelift

 A simple wrapper for face feature detection and recognition.

 [image: Supported Versions]

 [image: PyPi Status]

 [image: License]

 Getting Started

Getting Started

Welcome to Facelift!

This page should hopefully provide you with enough information to get the facelift
package installed so you can start detecting face features.
If you run into any issues with installation, please create a Bug Report [https://github.com/stephen-bunn/facelift/issues/new?labels=bug&template=bug-report.md]
with details about your current operating system and package version and we can try to
improve our setup documentation.

System Requirements

There are several required system requirements necessary for this package to work which
we unfortunately cannot bundle in this package.
The following sections will lead you through the installation of the necessary system
requirements.

cmake [https://cmake.org/]

This tool is necessary as dlib [http://dlib.net/] needs to be built upon install.

Linux

Debian / Ubuntu

apt install cmake

MacOS

Homebrew

brew install cmake

Macports

port install cmake

Windows

Download the CMake installer [https://cmake.org/download/] and make sure to
enable the setting to “Add CMake to the system PATH for all users” when
installing.
You may need to restart your shell depending on what terminal emulator you are
using in Windows.

Make sure that you can run cmake --version in your shell without recieving a
non-zero exit status code to verify your installation.

libmagic [https://man7.org/linux/man-pages/man3/libmagic.3.html]

This library helps us to determine the type of content we are attempting to process.
We need this to be able to optimally determine how to consume the data for an arbitrary
media file since OpenCV [https://docs.opencv.org/3.4/modules.html] is pretty lacking in this area.

Linux

Debian / Ubuntu

apt install libmagic1

MacOS

Homebrew

brew install libmagic

Macports

port install file

Windows

We install python-magic-bin [https://pypi.org/project/python-magic-bin/]
as a dependency if you are installing from a Windows environment.
This package should contain working binaries for libmagic built for
Windows.
If you encounter unhandled errors using libmagic on Windows, please create an
issue [https://github.com/stephen-bunn/facelift/issues] to let us know what you
are experiencing.

Package Installation

Installing the package should be super duper simple as we utilize Python’s setuptools.

$ poetry add facelift
$ # or if you're old school...
$ pip install facelift

Or you can build and install the package from the git repo.

$ git clone https://github.com/stephen-bunn/facelift.git
$ cd ./facelift
$ python setup.py install

Installing opencv-python should be quick for many environments as prebuilt
packages are provided from PyPi.
If you find that you are building OpenCV [https://docs.opencv.org/3.4/modules.html] on installation, it’s likely that you are
installing an old version from pythonhosted.org which does not include prebuilt
binaries.
This will likely cause many issues with OpenCV [https://docs.opencv.org/3.4/modules.html] not being built with proper support for
GTK X11 support which is necessary for reading media and opening windows.
If you run into this, try updating your local pip to the newest version (which
should install the dependency from PyPi).
Note that this dependency doesn’t come prebuilt with any GPU support.

The dlib dependency will always need to be built when installing facelift.
This requires that cmake is available on the system and doesn’t build with any GPU
support.

Model Installation

Due to PyPi’s upload limits, we cannot bundle the associated landmark and ResNet models
for face detection or face encoding.
Similar to how other projects have dealt with this issue in the past, we have supplied a
special module _data to programmatically fetch the necessary pre-trained models
for using this package.

The download_data() function will attempt to fetch the models uploaded to
the latest GitHub release.

from facelift._data import download_data
download_data()

If for some reason we mess up and forget to upload the models to the GitHub release, you
can manually specify the release tag using the release_tag parameter.
This will attempt to fetch the models from a very release instead of the very latest.

from facelift._data import download_data
download_data(release_tag="v0.1.0")

You can also see the basic download status written out to stdout by setting the
display_progress parameter to True.

from facelift._data import download_data
download_data(display_progress=True)

I would prefer to be able to bundle the models along with the package since we are
building a project revolving around very specific feature models and frameworks
(rather than providing an open-ended framework for face detection).
However, this is just something we need to do to satisfy PyPi.

Important

At the moment, the downloaded models will be placed in a data directory within
the facelift package.
This means that your system or virtual environment will contain the downloaded
models.
If you are interested in the absolute path that the downloaded models are being
written to, you should set the display_progress flag to True as we write out
where files are being stored.

GPU Support

To drastically speed up the processing and detection of face features we need to
manually build both OpenCV [https://docs.opencv.org/3.4/modules.html] and dlib [http://dlib.net/] for the machine’s GPU.
To do this we need to override the prebuilt CPU-only libraries included in the default
installation of the package.

Tip

I’m going to try and get a guide together for building opencv-python and dlib
with GPU support after a v1.0.0 release as it is a secondary milestone for this
project.

Building OpenCV

Todo

Need to write a guide for building OpenCV [https://docs.opencv.org/3.4/modules.html] with GPU support for each platform.

Building Dlib

Todo

Need to write a guide for building dlib [http://dlib.net/] with GPU support for each platform.

 Usage

Usage

Before we get started learning how to use the methods provided by Facelift Package, we
have some basic terminology to define.
The types module provides these following types/terms which we use
throughout the package.
We use these terms though most of our documentation, so make sure you take a peek at the
responsibility of these names.

	
Frame

Defines a single matrix of pixels representing an image (or a single frame).

Represented by a numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] using the shape (Any, Any, 3) of type
numpy.uint8.

These frames are pulled out of some media or stream and is used as the source
content to try and detect faces from.

	
Point

Describes an (x, y) coordinate relative to a specific frame.

Represented by a numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] of shape (2,) of type
numpy.int64.

	
PointSequence

Describes a sequence of points that typically define a feature.

Represented by a numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] of shape (Any, 2) of type
numpy.int64.

	
FaceFeature

An enum of available face features to detect (such as an eye or the nose).

Represented by a PointSequence.

	
Face

Defines a detected face containing the landmarks and bounding frame of the face.

Represented by a custom dataclasses.dataclass() [https://docs.python.org/3.7/library/dataclasses.html#dataclasses.dataclass] using a dictionary of
FaceFeature to PointSequence
to describe the detected face features.

	
Encoding

Describes an encoded face frame that can later be used to recognize the same face.

Represented by a numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] of shape (128,) of type
numpy.int64

Reading Frames

Likely you already have some kind of content you want to detect faces from.
Whether that be a picture, a video, or your webcam, we need to be able to capture the
frames from that media so we can use them for processing.
These content types that we typically want to extract frames from are defined in
MediaType.

	
class facelift.types.MediaType(value)

	Enumeration of acceptable media types for processing.

	
IMAGE

	Defines media that contains just a single frame to process.

	
VIDEO

	Defines media that contains a known number of frames to process.

	
STREAM

	Defines media that contains an unknown number of frames to process.

If processing a media file (such as an image or a video) these media types are
automatically discovered from some magic methods available in the magic module.
There, we attempt to make a best guess at what type of content you are attempting to
capture frames from.

>>> from facelift.types import MediaType
>>> from facelift.magic import get_media_type
>>> media_type = get_media_type(Path("~/my-video.mp4"))
>>> assert media_type == MediaType.VIDEO

Actually opening and reading frames from content is typically performed using a mix of
_ functions that use completel different syntax for each of these types of media.
For most all use cases we really shouldn’t care about the differences of how
OpenCV [https://docs.opencv.org/3.4/modules.html] opens, processes, and closes media.
So we reduced the mental overhead of this process a bit and namespaced it within the
capture module.

This module’s overall purpose is to effeciently encapsulate the OpenCV [https://docs.opencv.org/3.4/modules.html] calls
necessary to capture the frames from the given media.

[image: ../_images/capture-flow.png]
Basic Capture Flow

To do this we have exposed separate generator functions.
One for handling written media files, and another for handling streamed frames.
We made the decision to keep these generators separate as they have distinct features
that would make a single generator function less explicit and intuitive.

Capturing Media Frames

To read frames from existing media files (either images or videos) you can utilize the
iter_media_frames() generator to extract sequential frames.
This function takes a pathlib.Path [https://docs.python.org/3.7/library/pathlib.html#pathlib.Path] instance and will build the appropriate
generator to capture and iterate over the available frames one at a time.

	1
2
3
4
5

	from facelift.capture import iter_media_frames
from facelift.types import Frame

for frame in iter_media_frames(Path("~/my-video.mp4")):
 assert isinstance(frame, Frame)

If you would like to loop over the available frames, the loop boolean flag can be
set to True.
This flag will seek to the starting frame automatically once all frames have been read
essentially restarting the generator.
This means that you will need to break out of the generator yourself as it will produce
an infinite loop.

	1
2

	for frame in iter_media_frames(Path("~/my-video.mp4"), loop=True):
 assert isinstance(frame, Frame)

Capturing Stream Frames

To read frames from a stream (such as a webcam) you can utilize the very similar
iter_stream_frames() generator to extract the streaming frames.
This function will scan for the first available active webcam to stream frames from.

	1
2
3
4
5

	from facelift.capture import iter_stream_frames
from facelift.types import Frame

for frame in iter_stream_frames():
 assert isinstance(frame, Frame)

If you happen to have 2 webcams available, you can pick what webcam to stream frames
from by using the indexes (0-99).
For example, if you wanted to stream frames from the second available webcam,
simply pass in index 1 to the generator:

	1
2

	for frame in iter_stream_frames(1):
 assert isinstance(frame, Frame)

Important

When capturing streamed frames, this generator will not stop until the device stream
is halted.
Typically, when processing stream frames, you should build in a mechanism to break out
of the capture loop when desireable.

In most of the below examples I will simply be raising KeyboardInterrupt [https://docs.python.org/3.7/library/exceptions.html#KeyboardInterrupt] to
break out of this loop.
You will likely want to add some kind of break conditional to this loop in your usage.

Rendering Frames

Now that we are reading frames in, we probably want to be able to preview what is going
to be processed.
OpenCV [https://docs.opencv.org/3.4/modules.html] provides a semi-decent window utility that we take advantage of for our basic
frame preview.
If you want to display these frames in a more production-level application, I would
recommend looking into using a canvas powered by OpenGL instead of relying on the hacky
and inflexible solution provided by OpenCV [https://docs.opencv.org/3.4/modules.html].

It is not within the scope of this project to provide an optimal canvas for
displaying the frames read in through OpenCV [https://docs.opencv.org/3.4/modules.html].
There are likely other projects out there that can display frames (numpy pixel
arrays) or a transformed variant of this frame while taking advantage of the GPU.

Regardless, for our use cases we only want to be able to quickly and cheaply preview
the frames we are processing.
To help with this, we provide a opencv_window context manager that
will create a temporary window that can be used for rendering these captured frames.

	1
2
3
4
5
6

	from facelift.capture import iter_media_frames
from facelift.window import opencv_window

with opencv_window() as window:
 for frame in iter_stream_frames():
 window.render(frame)

Here is a quick screen capture running the above example.

 Contributing

Contributing

Important

When contributing to this repository, please adhere to our Code of Conduct and
first discuss the change you wish to make via an issue before submitting a pull
request.

Local Development

The following sections will guide you through setting up a local development environment
for working on this project package.
At the very least, make sure that you have the necessary pre-commit hooks installed
to make sure that all commits are pristine before they make it into the change history.

Installing Python

Note

If you already have Python 3.7+ installed on your local system, you can skip this
step completely.

Installing Python should be done through pyenv [https://github.com/pyenv/pyenv].
To first install pyenv please follow the guide they provided at
https://github.com/pyenv/pyenv#installation. When you finally have pyenv you should
be good to continue on.

$ pyenv --version
pyenv x.x.x

Now that you have pyenv we can install the necessary Python version. This project’s
package depends on Python 3.7+, so we can request that through pyenv.

$ pyenv install 3.7 # to install Python 3.7+
...

$ pwd
/PATH/TO/CLONED/REPOSITORY/project-name
$ pyenv local 3.7 # to mark the project directory as needing Python 3.7+
...

$ pyenv global 3.7 # if you wish Python 3.7 to be aliased to `python` everywhere
...

After installing and marking the repository as requiring Python 3.7+ you should be good
to continue on installing the project’s dependencies.

Virtual Environment

We use Poetry [https://python-poetry.org/] to manage both our dependencies and
virtual environments. Setting up poetry just involves installing it through pip
as a user-level dependency.

$ pip install --user poetry
Collecting poetry
Downloading poetry-x.x.x-py2.py3-non-any.whl
...

You can quickly setup your entire development environment by running the installation
process from poetry.

$ poetry install
Installing dependencies from lock file
...

This with create a virtual environment for you and install the necesary development
dependencies. From there you can jump into a subshell using the newly created virtual
environment using the shell subcommand.

$ poetry shell
spawning shell within ~/.local/share/virtualenvs/my-project-py3.7
...

$ exit # when you wish to exit the subshell

From this shell you have access to all the necessary development dependencies installed
in the virutal environment and can start actually writing and running code within the
client package.

Style Enforcement

This project’s preferred styles are fully enforced through
pre-commit [https://pre-commit.com/] hooks. In order to take advantage of these hooks
please make sure that you have pre-commit and the configured hooks installed in your
local environment.

Installing pre-commit is done through pip and should be installed as a
user-level dependency as it adds some console scripts that all projects using
pre-commit will need.

$ pip install --user pre-commit
Collecting pre-commit
Downloading pre_commit-x.x.x-py2.py3-none-any.whl
...

$ pre-commit --version
pre-commit 2.4.0

Once pre-commit is installed you should also install the hooks into the cloned
repository.

$ pwd
/PATH/TO/CLONED/REPOSITORY/project-name

$ pre-commit install
pre-commit installed at .git/hooks/pre-commit

After this you should be good to continue on. These installed hooks will do a first-time
setup when you attempt your next commit to build hook environments. Changes that violate
the defined style specifications in setup.cfg and pyproject.toml will cause the
commit to fail and will likely make the necessary changes to added / changed files to
be written to the failing files.

This will give you the opprotunity to view the changes the hooks made to the failing
files and add the new changes to the commit in order to make the commit pass. It also
gives you the opprotunity to make tweaks to the autogenerated changes to make them more
human accessible (only if necessary).

Editor Configuration

We also have some specific settings for editor configuration via
editorconfig [https://editorconfig.org/#download]. We recommend you install the
appropriate plugin for your editor of choice if your editor doesn’t already natively
support .editorconfig configuration files.

Project Tasking

All of our tasks are built and run through invoke [http://www.pyinvoke.org/] which is
basically just a more advanced (a little too advanced) Python alternative to
make [http://man7.org/linux/man-pages/man1/make.1.html]. The only reason we are using
this utility is because I know how it works and I already had most of the necessary
tasks defined from other projects.

From within the Poetry subshell, you can access and run these commands through the
provided invoke development dependency.

$ invoke --list
Available tasks:

 build Build the project.
 clean Clean the project.
 lint Lint the project.
 profile Run and profile a given Python script.
 test Test the project.
 docs.build Build docs.
 docs.build-news Build towncrier newsfragments.
 docs.clean Clean built docs.
 docs.view Build and view docs.
 linter.black Run Black tool check against source.
 linter.flake8 Run Flake8 tool against source.
 linter.isort Run ISort tool check against source.
 linter.mypy Run MyPy tool check against source.
 package.build Build pacakge source files.
 package.check Check built package is valid.
 package.clean Clean previously built package artifacts.
 package.coverage Build coverage report for test run.
 package.format Auto format package source files.
 package.requirements Generate requirements.txt from Poetry's lock.
 package.stub Generate typing stubs for the package.
 package.test Run package tests.
 package.typecheck Run type checking with generated package stubs.

You can run these tasks to do many miscellaneous project tasks such as building
documentation.

$ invoke docs.build
[docs.build] ... building 'html' documentation
Running Sphinx v3.0.3
loading pickled environment... done
building [mo]: targets for 0 po files that are out of date
building [html]: targets for 0 source files that are out of date
updating environment: 0 added, 0 changed, 0 removed
looking for now-outdated files... none found
no targets are out of date.
build succeeded.

The HTML pages are in build/html.

All of these tasks should just work right out of the box, but something might break
eventually after required tooling gets enough major updates.

Opening Issues

Issues should follow the included ISSUE_TEMPLATE found in
.github/ISSUE_TEMPLATE.md.

	
	Issues should contain the following sections:
	
	Expected Behavior

	Current Behavior

	Possible Solution

	Steps to Reproduce (for bugs)

	Context

	Your Environment

These sections help the developers greatly by providing a large understanding of the
context of the bug or requested feature without having to launch a full fleged
discussion inside of the issue.

Creating Pull Requests

Pull requests should follow the included PULL_REQUEST_TEMPLATE found in
.github/PULL_REQUEST_TEMPLATE.md.

	
Pull requests should always be from a topic / feature / bugfix
(left side) branch.

Pull requests from master branches will not be merged.

	Pull requests should not fail our requested style guidelines or linting checks.

 Code of Conduct

Code of Conduct

Our Pledge

We as members, contributors, and leaders pledge to make participation in our
community a harassment-free experience for everyone, regardless of age, body
size, visible or invisible disability, ethnicity, sex characteristics, gender
identity and expression, level of experience, education, socio-economic status,
nationality, personal appearance, race, religion, or sexual identity
and orientation.

We pledge to act and interact in ways that contribute to an open, welcoming,
diverse, inclusive, and healthy community.

Our Standards

Examples of behavior that contributes to a positive environment for our
community include:

	Demonstrating empathy and kindness toward other people

	Being respectful of differing opinions, viewpoints, and experiences

	Giving and gracefully accepting constructive feedback

	Accepting responsibility and apologizing to those affected by our mistakes,
and learning from the experience

	Focusing on what is best not just for us as individuals, but for the
overall community

Examples of unacceptable behavior include:

	The use of sexualized language or imagery, and sexual attention or
advances of any kind

	Trolling, insulting or derogatory comments, and personal or political attacks

	Public or private harassment

	Publishing others’ private information, such as a physical or email
address, without their explicit permission

	Other conduct which could reasonably be considered inappropriate in a
professional setting

Enforcement Responsibilities

Community leaders are responsible for clarifying and enforcing our standards of
acceptable behavior and will take appropriate and fair corrective action in
response to any behavior that they deem inappropriate, threatening, offensive,
or harmful.

Community leaders have the right and responsibility to remove, edit, or reject
comments, commits, code, wiki edits, issues, and other contributions that are
not aligned to this Code of Conduct, and will communicate reasons for moderation
decisions when appropriate.

Scope

This Code of Conduct applies within all community spaces, and also applies when
an individual is officially representing the community in public spaces.
Examples of representing our community include using an official e-mail address,
posting via an official social media account, or acting as an appointed
representative at an online or offline event.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported to the community leaders responsible for enforcement at
stephen@bunn.io.
All complaints will be reviewed and investigated promptly and fairly.

All community leaders are obligated to respect the privacy and security of the
reporter of any incident.

Enforcement Guidelines

Community leaders will follow these Community Impact Guidelines in determining
the consequences for any action they deem in violation of this Code of Conduct:

1. Correction

Community Impact: Use of inappropriate language or other behavior deemed
unprofessional or unwelcome in the community.

Consequence: A private, written warning from community leaders, providing
clarity around the nature of the violation and an explanation of why the
behavior was inappropriate. A public apology may be requested.

2. Warning

Community Impact: A violation through a single incident or series
of actions.

Consequence: A warning with consequences for continued behavior. No
interaction with the people involved, including unsolicited interaction with
those enforcing the Code of Conduct, for a specified period of time. This
includes avoiding interactions in community spaces as well as external channels
like social media. Violating these terms may lead to a temporary or
permanent ban.

3. Temporary Ban

Community Impact: A serious violation of community standards, including
sustained inappropriate behavior.

Consequence: A temporary ban from any sort of interaction or public
communication with the community for a specified period of time. No public or
private interaction with the people involved, including unsolicited interaction
with those enforcing the Code of Conduct, is allowed during this period.
Violating these terms may lead to a permanent ban.

4. Permanent Ban

Community Impact: Demonstrating a pattern of violation of community
standards, including sustained inappropriate behavior, harassment of an
individual, or aggression toward or disparagement of classes of individuals.

Consequence: A permanent ban from any sort of public interaction within
the community.

Attribution

This Code of Conduct is adapted from the Contributor Covenant, version 2.0, available at https://www.contributor-covenant.org/version/2/0/code_of_conduct.html.

Community Impact Guidelines were inspired by Mozilla’s code of conduct enforcement ladder [https://github.com/mozilla/diversity].

For answers to common questions about this code of conduct, see the FAQ at
https://www.contributor-covenant.org/faq. Translations are available at
https://www.contributor-covenant.org/translations.

 Changelog

Changelog

All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog [http://keepachangelog.com/en/1.0.0/] and this project adheres to Semantic Versioning [http://semver.org/spec/v2.0.0.html].

0.2.1 [https://github.com/stephen-bunn/facelift/releases/tag/v0.2.1] (2020-10-30)

Bug Fixes

	Fixing the release task and some inconsistencies that were causing the
download_data() function to raise a ValueError [https://docs.python.org/3.7/library/exceptions.html#ValueError].

0.2.0 [https://github.com/stephen-bunn/facelift/releases/tag/v0.2.0] (2020-10-30)

Miscellaneous

	Due to PyPi’s upload limit of ~100MB, we cannot bundle pre-trained models along with the
built package.
We are now building a process for acquiring these models around an included function
that will attempt to fetch the latest released models from GitHub releases.

The method download_data() should be a quick initial setup task
when attempting to use this module.
This task will download the necessary data to use the included detectors and encoders.

More details about what is necessary for this release process is and should (in the
future) be documented in the facelift._data module.

0.1.0 [https://github.com/stephen-bunn/facelift/releases/tag/v0.1.0] (2020-10-27)

Miscellaneous

	The initial release doesn’t have a super detailed list of introduced features or
bugfixes as this project was pulled together from other side projects I’ve had in the
past.
Below I’ll list the important features that we are starting out with.
Future additions should result in a history of news fragments that get aggregated into
this changelog.

Starting features:

	
	Face feature detection with a few bundled models.
	
	Basic face feature detection (eyes and nose)

	Partial face feature detection (trained model produced by dlib)

	Full face feature detection (third party trained model)

	
	Face recognition with a bundled ResNet produced by dlib to produce face encoding.
	
	Includes basic Euclidean distance scoring to find similar faces.

	
	Wrappers for OpenCV frame capturing.
	
	Generators for frames from written media files.

	Generators for frames from streaming devices (webcams).

	
	Wrappers for OpenCV windows.
	
	Context managers for named window management.

	
	Wrappers for OpenCV common frame transformations
	
	Scaling, resizing, rotating, cutting, copying, etc…

	
	Wrappers for OpenCV canvas drawing features
	
	Helper functions for drawing points, lines, polygons, text, etc…

	
	Example helpers module for basic face normalization.
	
	Gives a basic re-implementation of dlib’s get_face_chip() method.

 License

License

ISC License

Copyright (c) 2020, Stephen Bunn <stephen@bunn.io>

Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

 Attribution

Attribution

A lot of the logic that makes up this package is pulled from other projects or is using
resources that other developers have produced.
Below are callouts to the projects or resources that were used to create this package.

Facelift Icon

— Created by Delwar Hossain pulled from
Noun Project [https://thenounproject.com/]

81 Point Face Feature Model

— Created by codeniko pulled from
codeniko/shape_predictor_81_face_landmarks [https://github.com/codeniko/shape_predictor_81_face_landmarks]

This model is used as part of the FullFaceDetector
to allow for detecting the FOREHEAD feature.
Thanks to codeniko for traning this model.

Image Transformation Utilities

— Created by josebr1 pulled from
josebr1/imutils [https://github.com/jrosebr1/imutils]

A load of utilities and image transformations were inspired by and sometimes directly
pulled the work done in this project. Thanks to all the contributors who threw these
together. It made refactoring them to fit for my own design and use-case much easier.

Facial Recognition

— Created by ageitgey pulled from
ageitgey/face_recognition [https://github.com/ageitgey/face_recognition]

A fair chunk of the logic used for facial recognition was inspired from the work done
in this project. Thanks to all the contributors who worked on building this iteration
of a facial recognition package.

 Facelift Package

Facelift Package

facelift.types

Contains module-wide used types.

	
facelift.types.Frame

	An aliased type for a basic numpy array that gets given to use via OpenCV.

	Type

	NDArray[(Any, Any, 3), UInt8]

	
facelift.types.Point

	A single x, y coordinate that describes a single positional point.

	Type

	NDArray[(2,), Int32]

	
facelift.types.PointSequence

	A sequence of points that is typically used to describe a face feature or a line
during rendering.

	Type

	NDArray[(Any, 2), Int32]

	
facelift.types.Encoding

	A 128 dimension encoding of a detected face for a given frame.

	Type

	NDArray[(128,), Int32]

	
facelift.types.Detector

	Callable that takes a frame and an upsample count and discovers the bounds of
a face within the frame.

	Type

	Callable[[Frame, int [https://docs.python.org/3.7/library/functions.html#int]], PointSequence]

	
facelift.types.Predictor

	Callable which takes a frame and detected face bounds to discover the shape and
features within the face.

	Type

	Callable[[Frame, dlib.rectangle [http://dlib.net/python/index.html#dlib.rectangle]], dlib.full_object_detection [http://dlib.net/python/index.html#dlib.full_object_detection]]

	
class facelift.types.Encoder(*args, **kwds)

	Protocol class for dlib.face_recognition_model_v1..

	
compute_face_descriptor(frame, face, num_jitters=0, padding=0.25)

	Compute a descriptor for a detected face frame.

	Parameters

	
	frame (Frame) – The frame containing just the detected face.

	face (dlib.full_object_detection) – The raw detected face bounds within the given face frame.

	num_jitters (int [https://docs.python.org/3.7/library/functions.html#int]) – The number of jitters to run through the dector projection.
Defaults to 0.

	padding (float [https://docs.python.org/3.7/library/functions.html#float]) – The default padding around the face.
Defaults to 0.25.

	Returns

	The face descriptor (encoding).

	Return type

	dlib.vector

	
class facelift.types.Face(raw, landmarks, frame)

	Describes a detected face.

	Parameters

	
	raw (dlib.full_object_detection) – The raw dlib object detection container.

	landmarks (Dict[FaceFeature, PointSequence]) – Mapping of extracted face features to the sequence of points describing
those features.

	frame (Frame) – The base non-normalized cropped frame of just the face.

	
property rectangle

	Point sequence representation of the detected face’s bounds.

This property is useful for properly positioning text around the detected face
as the draw_text() needs a text container to be defined.

	Returns

	A sequence of 2 points indicating the top-left and bottom-right corners
of the detected face’s bounds.

	Return type

	PointSequence

	
class facelift.types.FaceFeature(value)

	Enumeration of features of a face that we can detect.

	
NOSE

	The nose of a face.

	
JAW

	The jaw line of a face.

	
MOUTH

	The external bounds of the mouth of a face.

	
INNER_MOUTH

	The internal bounds of the mouth of a face.

	
RIGHT_EYE

	The external and internal bounds of the right eye of a face.

	
LEFT_EYE

	The external and internal bounds of the left eye of a face.

	
RIGHT_EYEBROW

	The right eyebrow of a face.

	
LEFT_EYEBROW

	The left eyebrow of a face.

	
FOREHEAD

	The forehead curvature of a face.

	
class facelift.types.MediaType(value)

	Enumeration of acceptable media types for processing.

	
IMAGE

	Defines media that contains just a single frame to process.

	
VIDEO

	Defines media that contains a known number of frames to process.

	
STREAM

	Defines media that contains an unknown number of frames to process.

facelift.capture

Contains helpers and managers for capturing content from various sources.

Among the included functions, iter_media_frames() and
iter_stream_frames() should really be all you ever care about.
With these two functions you can iterate over either some image or video (as supported
by OpenCV) or frames streamed directly from a webcam.
The frames output by these generators are numpy arrays that are considered
Frame instances and are used throughout the project.

For example, if I had a video file ~/my-file.mp4 and wanted to iterate over all
available frames within the video, I would do use iter_media_frames() like the
following:

from pathlib import Path
from facelift.capture import iter_media_frames

MY_FILE = Path("~/my-file.mp4").expanduser()
for frame in iter_media_frames(MY_FILE):
 print(frame)

The same works for images, however only 1 frame will ever be yielded from the generator.

If you want to instead iterate over the frames from a webcam, you should use the
iter_stream_frames() like the following:

from facelift.capture import iter_stream_frames
will default the device id to a value of 0
this means OpenCV will attempt to discover the first available webcam
for frame in iter_stream_frames():
 print(frame)

if you have 2 webcams enabled and want to instead use the 2nd one, you should
specify a device index of 1 like this
for frame in iter_stream_frames(1):
 print(frame)

	
facelift.capture.file_capture(filepath)

	Context manager to open a given filepath for frame capture.

This is just a simple context manager wrapper around the base
media_capture() manager to ensure that a given filepath exists and is a
supported media type before attempting to build a capture around it.

Examples

>>> from pathlib import Path
>>> from facelift.capture import file_capture
>>> MY_FILEPATH = Path("~/my-file.mp4").expanduser()
>>> with file_capture(MY_FILEPATH) as capture:
... print(capture)
<VideoCapture 0x1234567890>

	Parameters

	filepath (Path [https://docs.python.org/3.7/library/pathlib.html#pathlib.Path]) – The filepath to open for capture

	Raises

	
	FileNotFoundError [https://docs.python.org/3.7/library/exceptions.html#FileNotFoundError] – When the given filepath doesn’t exist

	ValueError [https://docs.python.org/3.7/library/exceptions.html#ValueError] – When the given filepath is not a supported media type

	Yields

	cv2.VideoCapture – A capturer that allows for reading frames from the given media filepath

	Return type

	Generator [https://docs.python.org/3.7/library/typing.html#typing.Generator][VideoCapture, None [https://docs.python.org/3.7/library/constants.html#None], None [https://docs.python.org/3.7/library/constants.html#None]]

	
facelift.capture.iter_media_frames(media_filepath, loop=False)

	Iterate over frames from a given supported media file.

Examples

>>> from pathlib import Path
>>> from facelift.capture import iter_media_frames
>>> MEDIA_PATH = Path("~/my-media.mp4").expanduser()
>>> for frame in iter_media_frames(MEDIA_PATH):
... # do something with the frame

	Parameters

	
	media_filepath (Path [https://docs.python.org/3.7/library/pathlib.html#pathlib.Path]) – The filepath to the media to read frames from.

	loop (bool [https://docs.python.org/3.7/library/functions.html#bool]) – Flag that indicates if capture should reset to starting frame once all
frames have been read.
Defaults to False

	Yields

	Frame – A frame read from the given media file

	Return type

	Generator [https://docs.python.org/3.7/library/typing.html#typing.Generator][Type [https://docs.python.org/3.7/library/typing.html#typing.Type][ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]], None [https://docs.python.org/3.7/library/constants.html#None], None [https://docs.python.org/3.7/library/constants.html#None]]

	
facelift.capture.iter_stream_frames(stream_type=None)

	Iterate over frames from a given streaming device.

By default this iterator will attempt to connect to the first available webcam and
yield the webcam’s streamed frames.
You can specify the appropriate device index 0-99 (0 being the default), or a
custom stream type defined by the OpenCV video IO enum [https://bit.ly/3cctIN8].

Examples

>>> from facelift.capture import iter_stream_frames
>>> # iterate over frames available from the second available webcam
>>> for frame in iter_stream_frames(1):
... # do something with the frame

	Parameters

	stream_type (Optional[int [https://docs.python.org/3.7/library/functions.html#int]], optional) – The stream type to attempt to open.

	Yields

	Frame – A read frame from the given streaming device

	Return type

	Generator [https://docs.python.org/3.7/library/typing.html#typing.Generator][Type [https://docs.python.org/3.7/library/typing.html#typing.Type][ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]], None [https://docs.python.org/3.7/library/constants.html#None], None [https://docs.python.org/3.7/library/constants.html#None]]

	
facelift.capture.media_capture(media, media_type)

	General purpose media capture context manager.

This context manager is basically just a wrapper around the provided
VideoCapture constructor along with some capturing destruction logic.
The provided media can either be a filepath to capture frames off of or a device
id as defined by the OpenCV video IO enum [https://bit.ly/3cctIN8].

In most all cases where you just want to build a capture off of your default webcam,
you should just be giving a media of 0.

Examples

>>> # build a media capture for a specific media file
>>> from facelift.capture import media_capture
>>> with media_capture("/home/a-user/Desktop/test.mp4") as capture:
... print(capture)
<VideoCapture 0x1234567890>

>>> # build a media capture around the first available webcam
>>> from facelift.capture import media_capture
>>> with media_capture(0) as capture:
... print(capture)
<VideoCapture 0x1234567890>

	Parameters

	
	media (Union[str [https://docs.python.org/3.7/library/stdtypes.html#str], int [https://docs.python.org/3.7/library/functions.html#int]]) – The media to build a capturer for

	media_type (MediaType) –

	Raises

	ValueError [https://docs.python.org/3.7/library/exceptions.html#ValueError] – On failure to open the given media for capture

	Yields

	cv2.VideoCapture – A capturer that allows for reading sequential frames

	Return type

	Generator [https://docs.python.org/3.7/library/typing.html#typing.Generator][VideoCapture, None [https://docs.python.org/3.7/library/constants.html#None], None [https://docs.python.org/3.7/library/constants.html#None]]

	
facelift.capture.stream_capture(stream_type=None)

	Context manager to open a stream for frame capture.

By default this context manager will just attempt to connect to open capturing on
any available webcams or connected cameras.
You can get more specific about what device you would like to open a capturer on by
supplying a different stream type.
These stream types come directly from the
OpenCV video IO enum [https://bit.ly/3cctIN8].

Examples

>>> # build a frame capture from the first available webcam
>>> from facelift.capture import stream_capture
>>> with stream_capture() as capture:
... print(capture)
<VideoCapture 0x1234567890>

>>> # build a frame capture from the second available webcam
>>> from facelift.capture import stream_capture
>>> with stream_capture(1) as capture:
... print(capture)
<VideoCapture 0x1234567890>

	Parameters

	stream_type (Optional[int [https://docs.python.org/3.7/library/functions.html#int]], optional) – The stream type to open

	Raises

	ValueError [https://docs.python.org/3.7/library/exceptions.html#ValueError] – When the given stream device fails to be opened for capture

	Yields

	cv2.VideoCapture – A capturer that allows for reading frames from the defined stream type

	Return type

	Generator [https://docs.python.org/3.7/library/typing.html#typing.Generator][VideoCapture, None [https://docs.python.org/3.7/library/constants.html#None], None [https://docs.python.org/3.7/library/constants.html#None]]

facelift.transform

Contains some common necessary frame transformation helper methods.

These transformation methods are useful for optimizing face detection in frames.
Typically face detection takes much longer the more pixels there are to consider.
Therefore, using scale() or resize() will help you speed up detection.

These helper transforms can be composed together to produce apply multiple operations on
a single frame.
For example, if we wanted to first downscale by half and then rotate a frame by 90
degrees, we could do something like the following:

from facelift.transform import rotate, scale
transformed_frame = rotate(scale(frame, 0.5), 90)

	
facelift.transform.DEFAULT_INTERPOLATION

	The default type of interpolation to use in transforms that require an
interpolation method. Defaults to cv2.INTER_AREA.

	Type

	int [https://docs.python.org/3.7/library/functions.html#int]

	
facelift.transform.adjust(frame, brightness=None, sharpness=None)

	Adjust the brightness or sharpness of a frame.

Examples

>>> from facelift.transform import adjust
>>> sharper_frame = adjust(frame, sharpness=1.4)
>>> brighter_frame = adjust(frame, brightness=10)
>>> sharper_and_brighter_frame = adjust(frame, sharpness=1.4, brightness=10)

	Parameters

	
	frame (Frame) – The frame to adjust

	brightness (Optional[int [https://docs.python.org/3.7/library/functions.html#int]], optional) – The new brightness of the frame (can be negative, default is 0).
Defaults to 0.

	sharpness (Optional[float [https://docs.python.org/3.7/library/functions.html#float]], optional) – The new sharpness of the frame (0.0 is black, default is 1.0).
Defaults to 1.0.

	Returns

	The newly adjusted frame

	Return type

	Frame

	
facelift.transform.copy(frame)

	Copy the given frame to a new location in memory.

Examples

>>> from facelift.transform import copy
>>> copied_frame = copy(frame)
>>> assert frame == copied_frame
>>> assert frame is not copied_frame

	Parameters

	frame (Frame) – The frame to copy

	Returns

	An exact copy of the given frame

	Return type

	Frame

	
facelift.transform.crop(frame, start, end)

	Crop the given frame between two top-left to bottom-right points.

Examples

Crop a frame from the first pixel to the center pixel.

>>> from facelift.transform import crop
>>> assert frame.shape[:1] == [512, 512]
>>> cropped_frame = crop(frame, (0, 0), (256, 256))
>>> assert cropped_frame.shape[:1] == [256, 256]

	Parameters

	
	frame (Frame) – The frame to crop

	start (Tuple[int [https://docs.python.org/3.7/library/functions.html#int], int [https://docs.python.org/3.7/library/functions.html#int]]) – The top-left point to start the crop at

	end (Tuple[int [https://docs.python.org/3.7/library/functions.html#int], int [https://docs.python.org/3.7/library/functions.html#int]]) – The bottom-right point to end the crop at

	Raises

	ValueError [https://docs.python.org/3.7/library/exceptions.html#ValueError] – When the given starting crop point appears after the given ending crop point

	Returns

	The newly cropped frame

	Return type

	Frame

	
facelift.transform.flip(frame, x_axis=False, y_axis=False)

	Flip the given frame over either or both the x and y axis.

Examples

>>> from facelift.transform import flip
>>> vertically_flipped_frame = flip(frame, x_axis=True)
>>> horizontally_flipped_frame = flip(frame, y_axis=True)
>>> inverted_frame = flip(frame, x_axis=True, y_axis=True)

	Parameters

	
	frame (Frame) – The frame to flip

	x_axis (bool [https://docs.python.org/3.7/library/functions.html#bool], optional) – Flag indicating the frame should be flipped vertically.
Defaults to False.

	y_axis (bool [https://docs.python.org/3.7/library/functions.html#bool], optional) – Flag indicating the frame should be flipped horizontally.
Defaults to False.

	Returns

	The newly flipped frame

	Return type

	Frame

	
facelift.transform.grayscale(frame)

	Convert the given frame to grayscale.

This helper is useful sometimes for classification as color doesn’t matter as much
during face encoding.

Examples

>>> from facelift.transform import grayscale
>>> grayscale_frame = grayscale(bgr_frame)

	Parameters

	frame (Frame) – The BGR frame to convert to grayscale

	Returns

	The newly grayscaled frame

	Return type

	Frame

	
facelift.transform.resize(frame, width=None, height=None, lock_aspect=True, interpolation=cv2.INTER_AREA)

	Resize a given frame to a given width and/or height.

	If both width and height are given, the frame will be resized accordingly.

	If only one of width or height is given, the frame will be resized according to
the provided dimension (either width or height).

	As long as lock_aspect is truthy, the unprovided dimension will be
adjusted to maintain the original aspect-ratio of the frame.

	If lock_aspect is falsy, the resize operation will only scale the provided
dimension while keeping the original size of the unprovided dimension.

Examples

Resize a frame’s width while keeping the height relative:

>>> from facelift.transform import resize
>>> assert frame.shape[:1] == [512, 512]
>>> resized_frame = resize(frame, width=256, lock_aspect=True)
>>> assert resized_frame.shape[:1] == [256, 256]

Resize a frame’s width while keeping the original height:

>>> from facelift.transform import resize
>>> assert frame.shape[:1] == [512, 512]
>>> resized_frame = resize(frame, width=256, lock_aspect=False)
>>> assert resized_frame.shape[:1] == [512, 256]

Resize both a frame’s width and height:

>>> from facelift.transform import resize
>>> assert frame.shape[:1] == [512, 512]
>>> resized_frame = resize(frame, width=256, height=128)
>>> assert resized_frame.shape[:1] == [128, 256]

	Parameters

	
	frame (Frame) – The frame to resize

	width (Optional[int [https://docs.python.org/3.7/library/functions.html#int]], optional) – The exact width to resize the frame to.

	height (Optional[int [https://docs.python.org/3.7/library/functions.html#int]], optional) – The exact height to resize the frame to.

	lock_aspect (bool [https://docs.python.org/3.7/library/functions.html#bool], optional) – Whether to keep the width and height relative when only given one value.
Defaults to True.

	interpolation (int [https://docs.python.org/3.7/library/functions.html#int], optional) – The type of interpolation to use in the resize operation.
Defaults to DEFAULT_INTERPOLATION.

	Returns

	The newly resized frame

	Return type

	Frame

	
facelift.transform.rgb(frame)

	Convert the given frame to RGB.

This helper transform is typically needed when working with other image processing
libraries such as pillow [https://pillow.readthedocs.io/en/stable/] as they work
in RGB coordinates while OpenCV works in BGR coordinates.

Examples

>>> from facelift.transform import rgb
>>> rgb_frame = rgb(bgr_frame)

	Parameters

	frame (Frame) – The BGR frame to convert to RGB

	Returns

	The new RGB frame

	Return type

	Frame

	
facelift.transform.rotate(frame, degrees, interpolation=cv2.INTER_AREA)

	Rotate a frame while keeping the whole frame visible.

Examples

>>> from facelift.transform import rotate
>>> rotated_90 = rotate(frame, 90)
>>> rotated_neg_90 = rotate(frame, -90)

Warning

This transform typically will produce larger frames since we are producing a
rotated frame while keeping the original frame completely visible.
This means if we do a perfect 45 degree rotation on a 512x512 frame we will
produce a 724x724 frame since the 512x512 frame is now on a angle that requires
a larger container.

Be cautious when using rotation.
Most of the time you do not need to rotate on any angles other than 90, 180, and
270 for decent face detection.
However, this isn’t always true.

	Parameters

	
	frame (Frame) – The frame to rotate

	degrees (int [https://docs.python.org/3.7/library/functions.html#int]) – The number of degrees to rotate the given frame

	interpolation (int [https://docs.python.org/3.7/library/functions.html#int], optional) – The type of interpolation to use in the produced rotation matrix.
Defaults to DEFAULT_INTERPOLATION.

	Returns

	The newly rotated frame

	Return type

	Frame

	
facelift.transform.scale(frame, factor, interpolation=cv2.INTER_AREA)

	Scale a given frame down or up depending on the given scale factor.

Examples

Downscaling a frame can be performed with a scale factor >0 and <1.
For example, scaling a frame to half of its original size would require a scale
factor of 0.5.

>>> from facelift.transform import scale
>>> assert frame.shape[:1] == [512, 512]
>>> downscaled_frame = scale(frame, 0.5)
>>> assert downscaled_frame.shape[:1] == [256, 256]

Upscaling a frame with this method is very naive and suboptimal.
However, any value >1 will result in a upscaled frame.
For example, scaling a frame to double its original size would require a scale
factor of 2.

>>> from facelift.transform import scale
>>> assert frame.shape[:1] == [512, 512]
>>> upscaled_frame = scale(frame, 2)
>>> assert upscaled_frame.shape[:1] == [1024, 1024]

Following this logic, a scale factor of 1 would result in absolutely no change
to the given frame.

Warning

This transformation will return the exact same frame instance as the one
provided through the frame parameter in the following cases:

	If a factor of exactly 1 is given.
In this case the scale operation would result in no change.

	The given frame has factor less than 1 a width or height of 1px.
In this case we are attempting to scale down the given frame and we
cannot scale down the frame any further without producing a 0px frame.

	Parameters

	
	frame (Frame) – The frame to scale

	factor (float [https://docs.python.org/3.7/library/functions.html#float]) – The factor to scale the given frame

	interpolation (Optional[int [https://docs.python.org/3.7/library/functions.html#int]], optional) – The type of interpolation to use in the scale operation.
Defaults to DEFAULT_INTERPOLATION.

	Raises

	ValueError [https://docs.python.org/3.7/library/exceptions.html#ValueError] – When the given scale factor is not positive

	Returns

	The newly scaled frame

	Return type

	Frame

	
facelift.transform.translate(frame, delta_x=None, delta_y=None, interpolation=cv2.INTER_AREA)

	Translate the given frame a specific distance away from its origin.

Examples

>>> from facelift.transform import translate
>>> translated_neg_90_x_frame = translate(frame, delta_x=-90)

Important

This translation retains the original size of the given frame.
So a 512x512 frame translated 90px on the x-axis will still be 512x512 and space
where the frame use to take up will be essentially nulled out.

	Parameters

	
	frame (Frame) – The frame to translate

	delta_x (Optional[int [https://docs.python.org/3.7/library/functions.html#int]], optional) – The pixel distance to translate the frame on the x-axis.

	delta_y (Optional[int [https://docs.python.org/3.7/library/functions.html#int]], optional) – The pixel distance to translate the frame on the y-axis.

	interpolation (int [https://docs.python.org/3.7/library/functions.html#int], optional) – The type of interpolation to use during the translation.
Defaults to DEFAULT_INTERPOLATION.

	Returns

	The newly translated frame

	Return type

	Frame

facelift.magic

Contains helpers and enums used to guess the type of media that is being processed.

This module utilizes python-magic [https://github.com/ahupp/python-magic] which
in turn uses libmagic [https://linux.die.net/man/3/libmagic] to guess the appropriate
mimetype of some byte buffer.

	
facelift.magic.DEFAULT_MAGIC_BUFFER_SIZE

	The default number of bytes to try and read from
when making a guess at the mimetype of some file.

	Type

	int [https://docs.python.org/3.7/library/functions.html#int]

	
facelift.magic.get_media_type(media_filepath, buffer_size=None, validate=False)

	Try and determine the media type for content at the given filepath.

	Parameters

	
	media_filepath (Path [https://docs.python.org/3.7/library/pathlib.html#pathlib.Path]) – The filepath to guess the media type of

	buffer_size (Optional[int [https://docs.python.org/3.7/library/functions.html#int]], optional) – The number of bytes to use for guessing the media type of the given file.
Defaults to the value of DEFAULT_MAGIC_BUFFER_SIZE.

	validate (bool [https://docs.python.org/3.7/library/functions.html#bool], optional) – If truthy, a ValueError [https://docs.python.org/3.7/library/exceptions.html#ValueError] will be raised if the given file’s mimetype
does not match a supported MediaType.
Defaults to False.

	Raises

	
	FileNotFoundError [https://docs.python.org/3.7/library/exceptions.html#FileNotFoundError] – When the provided filepath does not exist

	ValueError [https://docs.python.org/3.7/library/exceptions.html#ValueError] – When validate is truthy and the given filepath does not match a
 supported MediaType

	Returns

	The appropriate media type enum attribute for the given filepath,
if a successful guess and media type match is made

	Return type

	Optional[MediaType]

	
facelift.magic.get_mimetype(media_filepath, buffer_size=None)

	Try and determine the mimetype for content at the given filepath.

	Parameters

	
	media_filepath (Path [https://docs.python.org/3.7/library/pathlib.html#pathlib.Path]) – The filepath to guess the mimetype of

	buffer_size (Optional[int [https://docs.python.org/3.7/library/functions.html#int]], optional) – The number of bytes to use for guessing the mimetype of the given file.
Defaults to the value of DEFAULT_MAGIC_BUFFER_SIZE.

	Raises

	FileNotFoundError [https://docs.python.org/3.7/library/exceptions.html#FileNotFoundError] – When the provided filepath does not exist

	Returns

	The guessed mimetype if a guess can be safely made

	Return type

	Optional[str [https://docs.python.org/3.7/library/stdtypes.html#str]]

facelift.detect

Contains the available bulitin face detectors.

The included detectors will handle the necessary process for taking a read frame and
discovering all the available faces and included landmarks.
If you have a custom face_landmarks model, you can inherit from
BaseLandmarkDetector to detect and return faces using a custom model.

Examples

>>> from facelift.detect import BasicFaceDetector
>>> from facelift.capture import iter_media_frames
>>> detector = BasicFaceDetector()
>>> for frame in iter_media_frames(MEDIA_FILEPATH):
... for face in detector.iter_faces(frame):
... print(face)

	
class facelift.detect.BaseLandmarkDetector

	An abstract landmark detector class that each landmark model should inherit from.

	Raises

	
	NotImplementedError [https://docs.python.org/3.7/library/exceptions.html#NotImplementedError] – If the model_filepath property is not implemented

	NotImplementedError [https://docs.python.org/3.7/library/exceptions.html#NotImplementedError] – If the landmark_slices property is not implemented

	
detector

	Detector to use in face bounds detection.

	Returns

	The detector callable.

	Return type

	Detector

	
get_landmarks(points)

	Get the mapping of face features and point sequences for extracted points.

	Parameters

	points (PointSequence) – The sequence of extracted points from dlib.

	Returns

	The dictionary of face features and point sequences.

	Return type

	Dict[FaceFeature, PointSequence]

	
iter_faces(frame, upsample=0)

	Iterate over detected faces within a given Frame.

Examples

Get detected faces from the first available webcam.

>>> from facelift.capture import iter_stream_frames
>>> from facelift.detect import BasicFaceDetector
>>> detector = BasicFaceDetector()
>>> for frame in iter_stream_frames():
... for face in detector.iter_faces(frame):
... print(face)

	Parameters

	
	frame (Frame) – The frame to detect faces in.

	upsample (int [https://docs.python.org/3.7/library/functions.html#int], optional) – The number of times to scale up the image before detecting faces.
Defaults to 0.

	Yields

	Face – A detected face within the image, this has no guarantee of order if
multiple faces are detected

	Return type

	Generator [https://docs.python.org/3.7/library/typing.html#typing.Generator][Face, None [https://docs.python.org/3.7/library/constants.html#None], None [https://docs.python.org/3.7/library/constants.html#None]]

	
abstract property landmark_slices

	Property mapping of facial features to face point slices.

	Raises

	NotImplementedError [https://docs.python.org/3.7/library/exceptions.html#NotImplementedError] – Must be implemented by subclasses

	Return type

	Dict [https://docs.python.org/3.7/library/typing.html#typing.Dict][FaceFeature, Tuple [https://docs.python.org/3.7/library/typing.html#typing.Tuple][int [https://docs.python.org/3.7/library/functions.html#int], int [https://docs.python.org/3.7/library/functions.html#int]]]

	
abstract property model_filepath

	Property filepath to the landmarks model that should be used for detection.

	Raises

	NotImplementedError [https://docs.python.org/3.7/library/exceptions.html#NotImplementedError] – Must be implemented by subclasses

	Return type

	Path [https://docs.python.org/3.7/library/pathlib.html#pathlib.Path]

	
predictor

	Predictor to use in face landmark detection.

	Returns

	The predictor callable.

	Return type

	Predictor

	
static shape_to_points(shape, dtype='int')

	Convert dlib shapes to point sequences.

Example

After getting a detected face shape from dlib, we need to convert it back
into a numpy.ndarray so OpenCV can use it.

>>> from facelift.detect import BasicFaceDetector
>>> detector = BasicFaceDetector()
>>> for face_bounds in detector.detector(frame, 0):
... face_shape = detector.predictor(frame, face_bounds)
... face_features = detector.shape_to_points(face_shape)

	Parameters

	
	shape (dlib.full_object_detection [http://dlib.net/python/index.html#dlib.full_object_detection]) – The detected dlib shape.

	dtype (str [https://docs.python.org/3.7/library/stdtypes.html#str], optional) – The point type to use when converting the given shape to points.
Defaults to “int”.

	Returns

	The newly created sequence of points.

	Return type

	PointSequence

	
static slices_to_landmarks(points, feature_slices)

	Group point sequences to features based on point index slices.

Helper function to automatically group features when given the feature slice
definition.
This feature slice definition is a basic way to easily categorize the features
discovered from the dlib predictor as an actual FaceFeature.

Examples

>>> from facelift.detect import BasicFaceDetector
>>> detector = BasicFaceDetector()
>>> for face_bounds in detector.detector(frame, 0):
... face_shape = detector.predictor(frame, face_bounds)
... face_features = detector.shape_to_points(face_shape)
... grouped_features = detector.slices_to_landmarks(face_features)

	Parameters

	
	points (PointSequence) – The points to extract feature sequences from.

	feature_slices (Dict[FaceFeature, Tuple[int, int]]) – A dictionary of FaceFeature and slice tuples.

	Returns

	The dictionary of features and grouped point sequences.

	Return type

	Dict[FaceFeature, PointSequence]

	
class facelift.detect.BasicFaceDetector

	Basic face detector.

This face detector gives single point positions for the outside of both eyes and the
philtrum (right beneath the nose).
For rendering, these facial features must be rendered as points rather than lines.

This model is useful for just finding faces and getting normalized face frames.
This model is not useful for emotion, perspective, or face state detection.

	
class facelift.detect.FullFaceDetector

	Full face detector.

This face detector detects all available frontal face features.
This model can be used for most anything, but may not be the most efficient.
If you are just trying to detect faces, you should probably use the
BasicFaceDetector instead.

	
get_landmarks(points)

	Get the mapping of face features and point sequences for extracted points.

	Parameters

	points (PointSequence) – The sequence of extracted points from dlib.

	Returns

	The dictionary of face features and point sequences.

	Return type

	Dict[FaceFeature, PointSequence]

	
class facelift.detect.PartialFaceDetector

	Partial face detector.

This face detector detects all features of a face except for the forehead.
This model is useful for most any purpose.
However, if all you are doing is detecting faces, you should probably use the
BasicFaceDetector instead.

	
facelift.detect.get_detector()

	Build the generic detector callable.

This detector comes directly from the dlib FHOG frontal face detector.

	Returns

	The new callable to detect face bounds

	Return type

	Detector

	
facelift.detect.get_predictor(model_filepath)

	Build a predictor callable for a given landmark model.

	Parameters

	model_filepath (Path [https://docs.python.org/3.7/library/pathlib.html#pathlib.Path]) – The path to the landmark model

	Raises

	FileNotFoundError [https://docs.python.org/3.7/library/exceptions.html#FileNotFoundError] – If the given model filepath does not exist

	Returns

	The new callable to predict face shapes

	Return type

	Predictor

facelift.encode

Contains the available builtin face encoders.

The included encoders will handle the necessary steps to take a given frame and
detected face to generate an encoding that can be used for future recognition.
I highly recommend that you use the BasicFaceDetector if attempting to
encode faces as it is lightweight and other detectors don’t provide any added benefit to
face recognition.

Examples

>>> from facelift.capture import iter_media_frames
>>> from facelift.detect import BasicFaceDetector
>>> from facelift.encode import BasicFaceEncoder
>>> detector = BasicFaceDetector()
>>> encoder = BasicFaceEncoder()
>>> for frame in iter_media_frames(MEDIA_FILEPATH):
... for face in detector.iter_faces(frame):
... face_encoding = encoder.get_encoding(frame, face)

Important

Faces detected from the FullFaceDetector cannot be encoded as the
model this detector uses is trained by a third party and not able to be processed by
dlib’s default ResNet model.
Please only use faces detected using the BasicFaceDetector or the
PartialFaceDetector for building face encodings.

I would highly recommend that you use the BasicFaceDetector in
all cases where you are performing encoding.
The trained detection model for this basic detector is ~5MB whereas the
alternative is >90MB.
Using a heavier model will cause slowdown when simply trying to recognize multiple
faces in a single frame.

	
facelift.encode.DEFAULT_ENCODING_JITTER

	The default amount of jitter to apply to produced encodings.

	Type

	int [https://docs.python.org/3.7/library/functions.html#int]

	
facelift.encode.DEFAULT_ENCODING_PADDING

	The default padding expected to exist around the detected face frame.

	Type

	float [https://docs.python.org/3.7/library/functions.html#float]

	
class facelift.encode.BaseEncoder

	An abstract encoder class that each encoder should inherit from.

	Raises

	NotImplementedError [https://docs.python.org/3.7/library/exceptions.html#NotImplementedError] – If the model_filepath property is not implemented

	
get_encoding(frame, face, jitter=0, padding=0.25)

	Calculate the encoding for a given frame and detected face.

Examples

>>> from facelift.capture import iter_media_frames
>>> from facelift.detect import BasicFaceDetector
>>> from facelift.encode import BasicFaceEncoder
>>> detector = BasicFaceDetector()
>>> encoder = BasicFaceEncoder()
>>> for frame in iter_media_frames(MEDIA_FILEPATH):
... for face in detector.iter_faces(frame):
... face_encoding = encoder.get_encoding(frame, face)

	Parameters

	
	frame (Frame) – The frame the face was detected in

	face (Face) – The detected face from the given frame

	jitter (int [https://docs.python.org/3.7/library/functions.html#int], optional) – The amount of jitter to apply during encoding.
This can help provide more accurate encodings for frames containing
the same face.
Defaults to DEFAULT_ENCODING_JITTER.

	padding (float [https://docs.python.org/3.7/library/functions.html#float], optional) – The amount of padding to apply to the face frame during encoding.
Defaults to DEFAULT_ENCODING_PADDING.

	Returns

	The encoding of the provided face for the given frame

	Return type

	Encoding

	
abstract property model_filepath

	Property filepath to the encoding model that should be used for encoding.

	Raises

	NotImplementedError [https://docs.python.org/3.7/library/exceptions.html#NotImplementedError] – Must be implemented by subclasses

	Return type

	Path [https://docs.python.org/3.7/library/pathlib.html#pathlib.Path]

	
score_encoding(source_encoding, known_encodings)

	Score a source encoding against a list of known encodings.

Important

This score is the average Euclidian distance between the given encodings.
So the most similar encodings will result in a score closest to 0.0.

If no encodings are given, then we will default to using math.inf [https://docs.python.org/3.7/library/math.html#math.inf]
as it is the greatest distance from 0.0 that we can define.

Examples

>>> from facelift.capture import iter_media_frames
>>> from facelift.detect import BasicFaceDetector
>>> from facelift.encode import BasicFaceEncoder
>>> detector = BasicFaceDetector()
>>> encoder = BasicFaceEncoder()
>>> # A list of previously encoded faces for a single person
>>> KNOWN_FACES = [...]
>>> for frame in iter_media_frames(MEDIA_FILEPATH):
... for face in detector.iter_faces(frame):
... face_encoding = encoder.get_encoding(frame, face)
... score = encoder.score_encoding(face_encoding, KNOWN_FACES)

	Parameters

	
	source_encoding (Encoding) – The unknown encoding we are attempting to score.

	known_encodings (List[Encoding]) – A list of known encodings we are scoring against.
These encodings should all encodings from a single person’s face.

	Returns

	The score of a given encoding against a list of known encodings.
This value should be greater than 0.0 (lower is better).

	Return type

	float [https://docs.python.org/3.7/library/functions.html#float]

	
class facelift.encode.BasicFaceEncoder

	Encode faces detected by the BasicFaceDetector.

This face encoder can handle faces detected by both the
BasicFaceDetector and the PartialFaceDetector.
However, you should likely only ever be encoding faces for recognition from the
lightest model available (BasicFaceDetector).

Important

This encoder can not handle faces detected using the
FullFaceDetector.
If we determine we are using a face detected by this detector, the
get_encoding() method will raise a ValueError [https://docs.python.org/3.7/library/exceptions.html#ValueError].

	
get_encoding(frame, face, jitter=0, padding=0.25)

	Calculate the encoding for a given frame and detected face.

Examples

>>> from facelift.capture import iter_media_frames
>>> from facelift.detect import BasicFaceDetector
>>> from facelift.encode import BasicFaceEncoder
>>> detector = BasicFaceDetector()
>>> encoder = BasicFaceEncoder()
>>> for frame in iter_media_frames(MEDIA_FILEPATH):
... for face in detector.iter_faces(frame):
... face_encoding = encoder.get_encoding(frame, face)

	Parameters

	
	frame (Frame) – The frame the face was detected in

	face (Face) – The detected face from the given frame

	jitter (int [https://docs.python.org/3.7/library/functions.html#int], optional) – The amount of jitter to apply during encoding.
This can help provide more accurate encodings for frames containing
the same face.
Defaults to DEFAULT_ENCODING_JITTER.

	padding (float [https://docs.python.org/3.7/library/functions.html#float], optional) – The amount of padding to apply to the face frame during encoding.
Defaults to DEFAULT_ENCODING_PADDING.

	Raises

	ValueError [https://docs.python.org/3.7/library/exceptions.html#ValueError] – When the given face was detected with the
 FullFaceDetector.

	Returns

	The encoding of the provided face for the given frame

	Return type

	Encoding

	
facelift.encode.get_encoder(model_filepath)

	Build an encoder for the given dlib ResNet model.

	Parameters

	model_filepath (Path [https://docs.python.org/3.7/library/pathlib.html#pathlib.Path]) – The path to the encoder model

	Raises

	FileNotFoundError [https://docs.python.org/3.7/library/exceptions.html#FileNotFoundError] – If the given model filepath does not exist

	Returns

	The encoder to use for encoding face frames

	Return type

	Encoder

facelift.helpers

Contains mechanisms to extract details or normalized details for detected faces.

	
facelift.helpers.DEFAULT_NORMALIZED_FACE_SIZE

	The default size of the normalized face frame.
Defaults to 256.

	Type

	int [https://docs.python.org/3.7/library/functions.html#int]

	
facelift.helpers.DEFAULT_NORMALIZED_LEFT_EYE_POSITION

	The default percentage (0.0-1.0) where the left eye should be placed in the
normalized face frame.
Defaults to (0.35, 0.35).

	Type

	Tuple[float [https://docs.python.org/3.7/library/functions.html#float], float [https://docs.python.org/3.7/library/functions.html#float]]

	
facelift.helpers.get_eye_angle(face)

	Get the angle the eyes are currently at for the given face.

	Parameters

	face (Face) – The face to get the eye angle from.

	Returns

	The floating point value describing the angle of the eyes in the face.

	Return type

	numpy.float64

	
facelift.helpers.get_eye_center_position(face)

	Get the center position between the eyes of the given face.

	Parameters

	face (Face) – The face to extract the center position from.

	Returns

	The position directly between the eyes of the face

	Return type

	Tuple[numpy.int64, numpy.int64]

	
facelift.helpers.get_eye_deltas(face)

	Get the difference between eye positions of the given face.

	Parameters

	face (Face) – The face to get the eye deltas from.

	Returns

	A tuple of (x delta, y delta) for the given face’s eyes

	Return type

	Tuple[numpy.int64, numpy.int64]

	
facelift.helpers.get_eye_distance(face)

	Get the distance between the eyes of the given face.

	Parameters

	face (Face) – The face to get the eye distance from.

	Returns

	A floating point value describing the distance between the face’s eye.

	Return type

	numpy.float64

	
facelift.helpers.get_eye_positions(face)

	Get the center position tuples of eyes from the given face.

	Parameters

	face (Face) – The face to extract eye positions from.

	Raises

	ValueError [https://docs.python.org/3.7/library/exceptions.html#ValueError] – If the given face is missing either left or right eye landmarks

	Return type

	Tuple [https://docs.python.org/3.7/library/typing.html#typing.Tuple][Tuple [https://docs.python.org/3.7/library/typing.html#typing.Tuple][int64, int64], Tuple [https://docs.python.org/3.7/library/typing.html#typing.Tuple][int64, int64]]

	Returns

	A tuple of (left eye position, right eye position)

	
facelift.helpers.get_normalized_frame(frame, face, desired_width=None, desired_height=None, desired_left_eye_position=None)

	Get a normalized face frame where the face is aligned, cropped, and positioned.

Examples

Get a normalized face frame from a detected face from the given frame:

>>> from facelift.helpers import get_normalized_frame
>>> normalized_frame = get_normalized_frame(frame, face)

	Parameters

	
	frame (Frame) – The original frame the face was detected from.

	face (Face) – The detected face to use when extracting a normalized face frame.

	desired_width (Optional[int [https://docs.python.org/3.7/library/functions.html#int]], optional) – The desired width of the normalized frame. Defaults to None.

	desired_height (Optional[int [https://docs.python.org/3.7/library/functions.html#int]], optional) – The desired height of the normalized frame. Defaults to None.

	desired_left_eye_position (Optional[Tuple[float [https://docs.python.org/3.7/library/functions.html#float], float [https://docs.python.org/3.7/library/functions.html#float]]], optional) – The desired position point for the left eye.
This position is a value between 0.0 and 1.0 indicating the percentage of
the frame.
Defaults to None.

	Returns

	The normalized face frame.

	Return type

	Frame

facelift.render

Contains some very basic wrappers around drawing things onto frames.

When detecting faces, it is kinda nice to be able to see what features are being
detected and where inaccuracies are being detected.
With a combination of the window module and some of these helper functions, we
can easily visualize what features are being detected.

For example, if we wanted to draw lines for each detected feature from the
PartialFaceDetector we can do the following:

>>> from facelift.capture import iter_stream_frames
>>> from facelift.window import opencv_window
>>> from facelift.detect import PartialFaceDetector
>>> from facelift.render import draw_line
>>> detector = PartialFaceDetector()
>>> with opencv_window() as window:
... for frame in iter_stream_frames():
... for face in detector.iter_faces(frame):
... for _, points in face.landmarks.items():
... frame = draw_line(frame, points)
... window.render(frame)

	
facelift.render.DEFAULT_COLOR

	The default color for all draw helper functions.
Defaults to (255, 255, 255), or white.

	Type

	Tuple[int [https://docs.python.org/3.7/library/functions.html#int], int [https://docs.python.org/3.7/library/functions.html#int], int [https://docs.python.org/3.7/library/functions.html#int]]

	
facelift.render.DEFAULT_FONT

	The default OpenCV HERSHEY font to use for rendering text.
Defaults to cv2.FONT_HERSHEY_SIMPLEX

	Type

	int [https://docs.python.org/3.7/library/functions.html#int]

	
class facelift.render.LineType(value)

	Enumeration of the different available PointSequence types for OpenCV.

	
FILLED

	Filled line (useful for single points).

	
CONNECTED_4

	A 4-point connected line.

	
CONNECTED_8

	An 8-point connected line.

	
ANTI_ALIASED

	An anti-aliased line (good for drawing curves).

	
class facelift.render.Position(value)

	Enumeration of available relative positions.

	
START

	Positioned content appears at the left of the container.

	
END

	Positioned content appears at the right of the container.

	
CENTER

	Positioned content appears in the middle of the container.

	
facelift.render.draw_contour(frame, line, color=255, 255, 255, thickness=- 1, line_type=cv2.LINE_AA)

	Form and draw a contour for the given line on a frame.

Examples

Draw a contour between multiple points.

>>> from facelift.render import draw_contour
>>> frame = draw_contour(frame, [(10, 10), (20, 20)])

	Parameters

	
	frame (Frame) – The frame to draw the contour on.

	line (PointSequence) – The array of points to use to form the contour.

	color (Tuple[int [https://docs.python.org/3.7/library/functions.html#int], int [https://docs.python.org/3.7/library/functions.html#int], int [https://docs.python.org/3.7/library/functions.html#int]], optional) – The color of the contour..
Defaults to DEFAULT_COLOR.

	thickness (int [https://docs.python.org/3.7/library/functions.html#int], optional) – The thickness of the contour.
Defaults to -1.

	line_type (LineType, optional) – The line type to use for the contour.
Defaults to LineType.ANTI_ALIASED.

	Return type

	Type [https://docs.python.org/3.7/library/typing.html#typing.Type][ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]

	Returns

	Frame The frame with the contour drawn on it

	
facelift.render.draw_line(frame, line, sequence=None, color=255, 255, 255, thickness=1, line_type=cv2.LINE_AA)

	Draw a sequence of connected points on a given frame.

Examples

Draw a line between a sequence of points.

>>> from facelift.render import draw_line
>>> frame = draw_line(frame, [(10, 10), (20, 20)])

	Parameters

	
	frame (Frame) – The frame to draw the line on.

	line (PointSequence) – The array of points to draw on the given frame

	sequence (Optional[List[Tuple[int [https://docs.python.org/3.7/library/functions.html#int], int [https://docs.python.org/3.7/library/functions.html#int]]]], optional) – An optional custom sequence for drawing the given line points.
Defaults to None.

	color (Tuple[int [https://docs.python.org/3.7/library/functions.html#int], int [https://docs.python.org/3.7/library/functions.html#int], int [https://docs.python.org/3.7/library/functions.html#int]], optional) – The color of the line.
Defaults to DEFAULT_COLOR.

	thickness (int [https://docs.python.org/3.7/library/functions.html#int], optional) – The thickness of the line. Defaults to 1.

	line_type (LineType, optional) – The type of the line.
Defaults to LineType.FILLED.

	Return type

	Type [https://docs.python.org/3.7/library/typing.html#typing.Type][ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]

	Returns

	Frame The frame with the line drawn on it

	
facelift.render.draw_point(frame, point, size=1, color=255, 255, 255, thickness=- 1, line_type=cv2.FILLED)

	Draw a single point on a given frame.

Examples

Draw a single point a position (10, 10) on a given frame.

>>> from facelift.render import draw_point
>>> frame = draw_point(frame, (10, 10))

	Parameters

	
	frame (Frame) – The frame to draw the point

	point (Point) – The pixel coordinates to draw the point

	size (int [https://docs.python.org/3.7/library/functions.html#int], optional) – The size of the point.
Defaults to 1.

	color (Tuple[int [https://docs.python.org/3.7/library/functions.html#int], int [https://docs.python.org/3.7/library/functions.html#int], int [https://docs.python.org/3.7/library/functions.html#int]], optional) – The color of the point.
Defaults to DEFAULT_COLOR.

	thickness (int [https://docs.python.org/3.7/library/functions.html#int], optional) – The thickness of the point.
Defaults to -1.

	line_type (LineType, optional) – The type of line type to use for the point.
Defaults to LineType.FILLED.

	Return type

	Type [https://docs.python.org/3.7/library/typing.html#typing.Type][ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]

	Returns

	Frame The frame with the point drawn on it

	
facelift.render.draw_points(frame, points, size=1, color=255, 255, 255, thickness=- 1, line_type=cv2.FILLED)

	Draw multiple points on a given frame.

Examples

Draw a sequence of points to a given frame.

>>> from facelift.render import draw_points
>>> frame = draw_points(frame, [(10, 10), (20, 20)])

	Parameters

	
	frame (Frame) – The frame to draw the points on.

	points (PointSequence) – The sequence of points to draw.

	size (int [https://docs.python.org/3.7/library/functions.html#int], optional) – The size of the points.
Defaults to 1.

	color (Tuple[int [https://docs.python.org/3.7/library/functions.html#int], int [https://docs.python.org/3.7/library/functions.html#int], int [https://docs.python.org/3.7/library/functions.html#int]], optional) – The color of the points.
Defaults to DEFAULT_COLOR.

	thickness (int [https://docs.python.org/3.7/library/functions.html#int], optional) – The thickness of the points.
Defaults to -1.

	line_type (LineType, optional) – The type of line type to use for the points.
Defaults to LineType.FILLED.

	Return type

	Type [https://docs.python.org/3.7/library/typing.html#typing.Type][ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]

	Returns

	Frame The frame with the points drawn on it

	
facelift.render.draw_rectangle(frame, start, end, color=255, 255, 255, thickness=1, line_type=cv2.LINE_AA)

	Draw a rectangle on the given frame.

Examples

Draw a rectangle starting at (10, 10) and ending at (20, 20).

>>> from facelift.render import draw_rectangle
>>> frame = draw_rectangle(frame, (10, 10), (20, 20))

	Parameters

	
	frame (Frame) – The frame to draw the rectangle on.

	start (Point) – The starting point of the rectangle.

	end (Point) – The ending point of the rectangle.

	color (Tuple[int [https://docs.python.org/3.7/library/functions.html#int], int [https://docs.python.org/3.7/library/functions.html#int], int [https://docs.python.org/3.7/library/functions.html#int]], optional) – The color of the rectangle.
Defaults to DEFAULT_COLOR.

	thickness (int [https://docs.python.org/3.7/library/functions.html#int], optional) – The thickness of the rectangle.
Defaults to 1.

	line_type (LineType, optional) – The line type to use when drawing the lines of the rectangle.
Defaults to LineType.ANTI_ALIASED.

	Return type

	Type [https://docs.python.org/3.7/library/typing.html#typing.Type][ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]

	Returns

	Frame The frame with the rectangle drawn on it

	
facelift.render.draw_text(frame, text, start, end, color=(255, 255, 255), font=cv2.FONT_HERSHEY_SIMPLEX, font_scale=1, thickness=1, line_type=cv2.LINE_AA, x_position=<Position.START: 'start'>, y_position=<Position.START: 'start'>, x_offset=0, y_offset=0, allow_overflow=False)

	Draw some text on the given frame.

Examples

Draw the text “Hello, World!” right-aligned within the text rectangle from
(10, 10) to (20, 20).

>>> from facelift.render import draw_text, Position
>>> frame = draw_text(
... frame,
... "Hello, World",
... (10, 10),
... (20, 20),
... x_position=Position.END
...)

	Parameters

	
	frame (Frame) – The frame to draw some text on

	text (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The text to draw on the frame

	start (Point) – The starting point of the text container

	end (Point) – The ending point of the text container

	color (Tuple[int [https://docs.python.org/3.7/library/functions.html#int], int [https://docs.python.org/3.7/library/functions.html#int], int [https://docs.python.org/3.7/library/functions.html#int]], optional) – The color of the text.
Defaults to DEFAULT_COLOR.

	font (int [https://docs.python.org/3.7/library/functions.html#int], optional) – The OpenCV hershey font to draw the text with.
Defaults to DEFAULT_FONT.

	font_scale (float [https://docs.python.org/3.7/library/functions.html#float], optional) – The scale of the font.
Defaults to 1.

	thickness (int [https://docs.python.org/3.7/library/functions.html#int], optional) – The thickness of the font.
Defaults to 1.

	line_type (LineType, optional) – The line type of the font.
Defaults to LineType.ANTI_ALIASED.

	x_position (Position, optional) – The x-axis position to draw the text in relative to the text container.
Defaults to Position.START.

	y_position (Position, optional) – The y-axis position to draw the text in relative to the text container.
Defaults to Position.START.

	x_offset (int [https://docs.python.org/3.7/library/functions.html#int], optional) – The x-axis offset from the text container to add to the calculated relative
position.
Defaults to 0.

	y_offset (int [https://docs.python.org/3.7/library/functions.html#int], optional) – The y-axis offset from the text container to add to the calculated relative
position.
Defaults to 0.

	allow_overflow (bool [https://docs.python.org/3.7/library/functions.html#bool], optional) – If set to True, the provided text will start drawing at the given start
and end points without obeying them as a bounding text container.
Defaults to False.

	Return type

	Type [https://docs.python.org/3.7/library/typing.html#typing.Type][ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]

	Returns

	Frame The frame with the text drawn on it

facelift.window

Contains some helper abstractions for OpenCV windows and frame rendering.

This collection of window helpers is just to help standardize and cleanup how to
interact with OpenCV window displays.
The opencv_window context manager is very easy to use for getting a quick
window for rendering frames as they are produced.

For example:

>>> from pathlib import Path
>>> from facelift.window import opencv_window
>>> from facelift.capture import iter_media_frames
>>> with opencv_window() as window:
... for frame in iter_media_frames(Path("~/my-file.mp4")):
... window.render(frame)

This context manager will produce a new window for rendering the frames read from
my-file.mp4 and will destroy the window once the context is exited.

I wouldn’t recommend using this for any kind of production use; mostly the OpenCV window
is just useful for debugging.

	
facelift.window.DEFAULT_WINDOW_TITLE

	The default OpenCV window title if none is supplied.
Defaults to “Facelift”.

	Type

	str [https://docs.python.org/3.7/library/stdtypes.html#str]

	
facelift.window.DEFAULT_WINDOW_DELAY

	The default number of milliseconds to wait between showing frames.
Defaults to 1.

	Type

	int [https://docs.python.org/3.7/library/functions.html#int]

	
facelift.window.DEFAULT_WINDOW_STEP_KEY

	The default ASCII key index to use as the step key when step is enabled.
Defaults to 0x20 (Space).

	Type

	int [https://docs.python.org/3.7/library/functions.html#int]

	
class facelift.window.WindowStyle

	Object namespace of available OpenCV window styles.

	
DEFAULT

	The default OpenCV window style.

	Type

	int [https://docs.python.org/3.7/library/functions.html#int]

	
AUTOSIZE

	Automatically fit window size on creation.

	Type

	int [https://docs.python.org/3.7/library/functions.html#int]

	
GUI_NORMAL

	Window with a basic GUI experience.

	Type

	int [https://docs.python.org/3.7/library/functions.html#int]

	
GUI_EXPANDED

	Window with an expanded GUI experience.

	Type

	int [https://docs.python.org/3.7/library/functions.html#int]

	
FULLSCREEN

	Window that displays frames fullscreen (full-canvas).

	Type

	int [https://docs.python.org/3.7/library/functions.html#int]

	
FREE_RATIO

	Window that allows for any window ratio.

	Type

	int [https://docs.python.org/3.7/library/functions.html#int]

	
KEEP_RATIO

	Window that maintains the original window ratio.

	Type

	int [https://docs.python.org/3.7/library/functions.html#int]

	
OPENGL

	Window rendered via OpenGL.
May not work for some machines and will only work if OpenCV is compiled with
GPU support.

	Type

	int [https://docs.python.org/3.7/library/functions.html#int]

	
class facelift.window.opencv_window(title='Facelift', style=cv2.WINDOW_NORMAL, delay=1, step=False, step_key=32)

	Create an OpenCV window that closes once the context exits.

Examples

Easy usage of OpenCV’s provided window to display read frames from a webcam.

>>> from facelift.window import opencv_window
>>> with opencv_window() as window:
... for frame in iter_stream_frames():
... window.render(frame)

	Parameters

	
	title (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The title of the OpenCV window.

	style (int [https://docs.python.org/3.7/library/functions.html#int]) – The style of the OpenCV window.

	delay (float [https://docs.python.org/3.7/library/functions.html#float]) – The number of milliseconds to delay between displaying frames.

	step (bool [https://docs.python.org/3.7/library/functions.html#bool]) – Flag that indicates if the window should wait for a press of the defined
step_key before releasing the render call.
Defaults to False.

	step_key (int [https://docs.python.org/3.7/library/functions.html#int]) – The ASCII integer index of the key to wait for press when step is True.
Defaults to 0x20 (Space).

	Raises

	
	ValueError [https://docs.python.org/3.7/library/exceptions.html#ValueError] – If the given window title is an empty string

	ValueError [https://docs.python.org/3.7/library/exceptions.html#ValueError] – If the given window delay is less or equal to 0

	
__enter__()

	Initialize the context of the window.

	
__exit__(exc_type, exc_value, traceback)

	Destroy the context of the window.

	Parameters

	
	exc_type (Optional [https://docs.python.org/3.7/library/typing.html#typing.Optional][Type [https://docs.python.org/3.7/library/typing.html#typing.Type][BaseException [https://docs.python.org/3.7/library/exceptions.html#BaseException]]]) –

	exc_value (Optional [https://docs.python.org/3.7/library/typing.html#typing.Optional][BaseException [https://docs.python.org/3.7/library/exceptions.html#BaseException]]) –

	traceback (Optional [https://docs.python.org/3.7/library/typing.html#typing.Optional][traceback]) –

	Return type

	Optional [https://docs.python.org/3.7/library/typing.html#typing.Optional][bool [https://docs.python.org/3.7/library/functions.html#bool]]

	
close()

	Destroy the window with the current context’s title.

	
create()

	Create a new window with the current context’s title and style.

	
render(frame)

	Render a given frame in the current window.

	Parameters

	frame (Frame) – The frame to render within the window

facelift._data

Helpers for fetching the pre-trained models this project is built around.

Due to the size of the models that we are building this project around, we need to fetch
the models outside of the standard PyPi installation.
The following methods handle building an asset manifest that should be released with
each GitHub release.
This asset manifest will then further inform the little downloading script we have
provided where to find and place the assets in the installed package.

This helper utility currently expects the following of the GitHub release:

	A data-manifest.json is provided as a GitHub release asset.

	All models within the asset manifest are included as GitHub release assets.

Important

The data-manifest.json must following the following structure:

{
 "relative filepath from package root for asset": [
 "download url of asset",
 "md5 hash of asset"
]
}

As an example:

{
 "data/encoders/dlib_face_recognition_resnet_model_v1.dat": [
 "https://github.com/stephen-bunn/facelift/releases/download/v0.1.0/dlib_face_recognition_resnet_model_v1.dat",
 "2316b25ae80acf4ad9b620b00071c423"
]
}

Examples

>>> from facelift._data import download_data
>>> download_data(display_progress=True)
https://... [123 / 456] 26.97%
Downloaded https://... to ./... (1234567890)

	
facelift._data.build_manifest(release_tag, *asset_filepaths)

	Build the manifest content for a proposed release and defined assets.

	Parameters

	
	release_tag (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The release tag the manifest is being built for.

	asset_filepaths (pathlib.Path [https://docs.python.org/3.7/library/pathlib.html#pathlib.Path]) – Multiple existing local asset filepaths.

	Raises

	
	FileNotFoundError [https://docs.python.org/3.7/library/exceptions.html#FileNotFoundError] – When a given asset filepath does not exist.

	ValueError [https://docs.python.org/3.7/library/exceptions.html#ValueError] – When a checksum cannot be calculated for one of the given filepaths.

	Returns

	The manifest JSON-serializable dictionary

	Return type

	Dict[str [https://docs.python.org/3.7/library/stdtypes.html#str], Tuple[str [https://docs.python.org/3.7/library/stdtypes.html#str], str [https://docs.python.org/3.7/library/stdtypes.html#str]]]

	
facelift._data.download_data(display_progress=False, release_tag=None, chunk_size=4096, validate=True)

	Download the data from a fetched remote release manifest.

	Parameters

	
	display_progress (bool [https://docs.python.org/3.7/library/functions.html#bool], optional) – Flag that indicates if you want to display the download progress for assets.
Defaults to False.

	release_tag (Optional[str [https://docs.python.org/3.7/library/stdtypes.html#str]], optional) – The release tag of the assets you want to download.
Defaults to None which will fetch the latest release assets.

	chunk_size (int [https://docs.python.org/3.7/library/functions.html#int], optional) – The chunk size to use when downloading assets.
Defaults to DOWNLOAD_CHUNK_SIZE.

	validate (bool [https://docs.python.org/3.7/library/functions.html#bool], optional) – If False, will skip checksum validation for all downloaded assets.
Defaults to True.

	Raises

	
	FileExistsError [https://docs.python.org/3.7/library/exceptions.html#FileExistsError] – If a file already exists at one of the assets relative file locations.

	ValueError [https://docs.python.org/3.7/library/exceptions.html#ValueError] – If the downloaded assets fails checksum validation.

	
facelift._data.get_remote_manifest(release_tag=None)

	Get the manifest content from a GitHub release.

	Parameters

	release_tag (Optional[str [https://docs.python.org/3.7/library/stdtypes.html#str]], optional) – The release tag of the manifest to fetch.
Defaults to None which fetches the latest release manifest.

	Returns

	The manifest JSON-serializable dictionary

	Return type

	Dict[str [https://docs.python.org/3.7/library/stdtypes.html#str], Tuple[str [https://docs.python.org/3.7/library/stdtypes.html#str], str [https://docs.python.org/3.7/library/stdtypes.html#str]]]

 Python Module Index

 Python Module Index

 f

 		 	

 		
 f	

 	[image: -]
 	
 facelift	

 	
 	
 facelift._data	

 	
 	
 facelift.capture	

 	
 	
 facelift.detect	

 	
 	
 facelift.encode	

 	
 	
 facelift.helpers	

 	
 	
 facelift.magic	

 	
 	
 facelift.render	

 	
 	
 facelift.transform	

 	
 	
 facelift.types	

 	
 	
 facelift.window	

 Index

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | V
 | W

_

 	
 	__enter__() (facelift.window.opencv_window method)

 	
 	__exit__() (facelift.window.opencv_window method)

A

 	
 	adjust() (in module facelift.transform)

 	
 	ANTI_ALIASED (facelift.render.LineType attribute)

 	AUTOSIZE (facelift.window.WindowStyle attribute)

B

 	
 	BaseEncoder (class in facelift.encode)

 	BaseLandmarkDetector (class in facelift.detect)

 	
 	BasicFaceDetector (class in facelift.detect)

 	BasicFaceEncoder (class in facelift.encode)

 	build_manifest() (in module facelift._data)

C

 	
 	CENTER (facelift.render.Position attribute)

 	close() (facelift.window.opencv_window method)

 	compute_face_descriptor() (facelift.types.Encoder method)

 	CONNECTED_4 (facelift.render.LineType attribute)

 	
 	CONNECTED_8 (facelift.render.LineType attribute)

 	copy() (in module facelift.transform)

 	create() (facelift.window.opencv_window method)

 	crop() (in module facelift.transform)

D

 	
 	DEFAULT (facelift.window.WindowStyle attribute)

 	DEFAULT_COLOR (in module facelift.render)

 	DEFAULT_ENCODING_JITTER (in module facelift.encode)

 	DEFAULT_ENCODING_PADDING (in module facelift.encode)

 	DEFAULT_FONT (in module facelift.render)

 	DEFAULT_INTERPOLATION (in module facelift.transform)

 	DEFAULT_MAGIC_BUFFER_SIZE (in module facelift.magic)

 	DEFAULT_NORMALIZED_FACE_SIZE (in module facelift.helpers)

 	DEFAULT_NORMALIZED_LEFT_EYE_POSITION (in module facelift.helpers)

 	DEFAULT_WINDOW_DELAY (in module facelift.window)

 	
 	DEFAULT_WINDOW_STEP_KEY (in module facelift.window)

 	DEFAULT_WINDOW_TITLE (in module facelift.window)

 	detector (facelift.detect.BaseLandmarkDetector attribute)

 	Detector (in module facelift.types)

 	download_data() (in module facelift._data)

 	draw_contour() (in module facelift.render)

 	draw_line() (in module facelift.render)

 	draw_point() (in module facelift.render)

 	draw_points() (in module facelift.render)

 	draw_rectangle() (in module facelift.render)

 	draw_text() (in module facelift.render)

E

 	
 	Encoder (class in facelift.types)

 	
 	Encoding (in module facelift.types)

 	END (facelift.render.Position attribute)

F

 	
 	Face (class in facelift.types)

 	FaceFeature (class in facelift.types)

 	
 facelift._data

 	module

 	
 facelift.capture

 	module

 	
 facelift.detect

 	module

 	
 facelift.encode

 	module

 	
 facelift.helpers

 	module

 	
 facelift.magic

 	module

 	
 facelift.render

 	module

 	
 	
 facelift.transform

 	module

 	
 facelift.types

 	module

 	
 facelift.window

 	module

 	file_capture() (in module facelift.capture)

 	FILLED (facelift.render.LineType attribute)

 	flip() (in module facelift.transform)

 	FOREHEAD (facelift.types.FaceFeature attribute)

 	Frame (in module facelift.types)

 	FREE_RATIO (facelift.window.WindowStyle attribute)

 	FullFaceDetector (class in facelift.detect)

 	FULLSCREEN (facelift.window.WindowStyle attribute)

G

 	
 	get_detector() (in module facelift.detect)

 	get_encoder() (in module facelift.encode)

 	get_encoding() (facelift.encode.BaseEncoder method)

 	(facelift.encode.BasicFaceEncoder method)

 	get_eye_angle() (in module facelift.helpers)

 	get_eye_center_position() (in module facelift.helpers)

 	get_eye_deltas() (in module facelift.helpers)

 	get_eye_distance() (in module facelift.helpers)

 	get_eye_positions() (in module facelift.helpers)

 	
 	get_landmarks() (facelift.detect.BaseLandmarkDetector method)

 	(facelift.detect.FullFaceDetector method)

 	get_media_type() (in module facelift.magic)

 	get_mimetype() (in module facelift.magic)

 	get_normalized_frame() (in module facelift.helpers)

 	get_predictor() (in module facelift.detect)

 	get_remote_manifest() (in module facelift._data)

 	grayscale() (in module facelift.transform)

 	GUI_EXPANDED (facelift.window.WindowStyle attribute)

 	GUI_NORMAL (facelift.window.WindowStyle attribute)

I

 	
 	IMAGE (facelift.types.MediaType attribute)

 	INNER_MOUTH (facelift.types.FaceFeature attribute)

 	
 	iter_faces() (facelift.detect.BaseLandmarkDetector method)

 	iter_media_frames() (in module facelift.capture)

 	iter_stream_frames() (in module facelift.capture)

J

 	
 	JAW (facelift.types.FaceFeature attribute)

K

 	
 	KEEP_RATIO (facelift.window.WindowStyle attribute)

L

 	
 	landmark_slices() (facelift.detect.BaseLandmarkDetector property)

 	LEFT_EYE (facelift.types.FaceFeature attribute)

 	
 	LEFT_EYEBROW (facelift.types.FaceFeature attribute)

 	LineType (class in facelift.render)

M

 	
 	media_capture() (in module facelift.capture)

 	MediaType (class in facelift.types)

 	model_filepath() (facelift.detect.BaseLandmarkDetector property)

 	(facelift.encode.BaseEncoder property)

 	
 module

 	facelift._data

 	facelift.capture

 	facelift.detect

 	facelift.encode

 	facelift.helpers

 	facelift.magic

 	facelift.render

 	facelift.transform

 	facelift.types

 	facelift.window

 	
 	MOUTH (facelift.types.FaceFeature attribute)

N

 	
 	NOSE (facelift.types.FaceFeature attribute)

O

 	
 	opencv_window (class in facelift.window)

 	
 	OPENGL (facelift.window.WindowStyle attribute)

P

 	
 	PartialFaceDetector (class in facelift.detect)

 	Point (in module facelift.types)

 	PointSequence (in module facelift.types)

 	
 	Position (class in facelift.render)

 	predictor (facelift.detect.BaseLandmarkDetector attribute)

 	Predictor (in module facelift.types)

R

 	
 	rectangle() (facelift.types.Face property)

 	render() (facelift.window.opencv_window method)

 	resize() (in module facelift.transform)

 	
 	rgb() (in module facelift.transform)

 	RIGHT_EYE (facelift.types.FaceFeature attribute)

 	RIGHT_EYEBROW (facelift.types.FaceFeature attribute)

 	rotate() (in module facelift.transform)

S

 	
 	scale() (in module facelift.transform)

 	score_encoding() (facelift.encode.BaseEncoder method)

 	shape_to_points() (facelift.detect.BaseLandmarkDetector static method)

 	
 	slices_to_landmarks() (facelift.detect.BaseLandmarkDetector static method)

 	START (facelift.render.Position attribute)

 	STREAM (facelift.types.MediaType attribute)

 	stream_capture() (in module facelift.capture)

T

 	
 	translate() (in module facelift.transform)

V

 	
 	VIDEO (facelift.types.MediaType attribute)

W

 	
 	WindowStyle (class in facelift.window)

 GPU Support

GPU Support

To drastically speed up the processing and detection of face features we need to
manually build both OpenCV [https://docs.opencv.org/3.4/modules.html] and dlib [http://dlib.net/] for the machine’s GPU.
To do this we need to override the prebuilt CPU-only libraries included in the default
installation of the package.

Tip

I’m going to try and get a guide together for building opencv-python and dlib
with GPU support after a v1.0.0 release as it is a secondary milestone for this
project.

Building OpenCV

Todo

Need to write a guide for building OpenCV [https://docs.opencv.org/3.4/modules.html] with GPU support for each platform.

Building Dlib

Todo

Need to write a guide for building dlib [http://dlib.net/] with GPU support for each platform.

 System Requirements

System Requirements

There are several required system requirements necessary for this package to work which
we unfortunately cannot bundle in this package.
The following sections will lead you through the installation of the necessary system
requirements.

cmake [https://cmake.org/]

This tool is necessary as dlib [http://dlib.net/] needs to be built upon install.

Linux

Debian / Ubuntu

apt install cmake

MacOS

Homebrew

brew install cmake

Macports

port install cmake

Windows

Download the CMake installer [https://cmake.org/download/] and make sure to
enable the setting to “Add CMake to the system PATH for all users” when
installing.
You may need to restart your shell depending on what terminal emulator you are
using in Windows.

Make sure that you can run cmake --version in your shell without recieving a
non-zero exit status code to verify your installation.

libmagic [https://man7.org/linux/man-pages/man3/libmagic.3.html]

This library helps us to determine the type of content we are attempting to process.
We need this to be able to optimally determine how to consume the data for an arbitrary
media file since OpenCV [https://docs.opencv.org/3.4/modules.html] is pretty lacking in this area.

Linux

Debian / Ubuntu

apt install libmagic1

MacOS

Homebrew

brew install libmagic

Macports

port install file

Windows

We install python-magic-bin [https://pypi.org/project/python-magic-bin/]
as a dependency if you are installing from a Windows environment.
This package should contain working binaries for libmagic built for
Windows.
If you encounter unhandled errors using libmagic on Windows, please create an
issue [https://github.com/stephen-bunn/facelift/issues] to let us know what you
are experiencing.

 Detecting Faces

Detecting Faces

Now onto the fun part.
Face feature detection is powered by good ol’ dlib [http://dlib.net/].
As part of this package, we have provided 3 pre-trained landmark models for face
features each detecting various different face landmarks.

Tip

To learn how to acquire these models, please see the Model Installation
documentation.

The face features (interchangeably termed landmarks) we are able to detect are
classified in the FaceFeature enumeration.

The landmark models are programmatically provided through the following
BaseLandmarkDetector subclasses:

	BasicFaceDetector

	PartialFaceDetector

	FullFaceDetector

Although each of these detectors operates essentially the same way, they produce
different results and have various caveats that you would benefit from knowing.
We will be covering the ins and outs of each of these detectors in the following related
sections.

But first, a few helpful details on how subclasses of
BaseLandmarkDetector work.
Each subclass will contain a reference to a file location where the trained landmark
model exists.
Upon instantiation of the subclass, that model will be open and read into memory
which can take longer than a second in some cases (given the size of the model).

	1
2
3

	from facelift.detect import BasicFaceDetector
BasicFaceDetector.model_filepath # filepath to the related trained landmark model
detector = BasicFaceDetector() # trained model is opened and loaded into memory

Each instance of these subclass comes with a helpful little generator that will produce
instances of Face for a given Frame.
This generator is called iter_faces() and will
utilize the loaded model to handle feature detection ✨ automagically ✨.

	1
2
3
4
5
6
7
8

	from facelift.types import Face
from facelift.capture import iter_stream_frames
from facelift.detect import BasicFaceDetector

detector = BasicFaceDetector()
for frame in iter_stream_frames():
 for face in detector.iter_faces(frame):
 assert isinstance(face, Face)

Each generated face represents a single set of face landmarks detected from the given
frame.
The accuracy of this detection is wholely the responsibility of the trained model
(although you can typically benefit it by transforming the frame into an optimal state
before attempting to perform detection).

[image: ../_images/detect-flow.png]
Detect Flow

If you are finding that the face landmark models we install are not as accurate as you
require, you should look further into training your own landmark models for dlib [http://dlib.net/].
Note that this is not a trivial task.

Tip

The iter_faces() generator comes with a parameter
called upsample that is defaulted to 0.
If you are having to detect faces from really small frames, setting this
parameter to a positive value will attempt to optimally upsample the frame using
dlib [http://dlib.net/]’s builtin utilities.

	1
2
3

	for frame in iter_stream_frames():
 for face in detector.iter_faces(frame, upsample=2):
 assert isinstance(face, Face)

Be cautious about using this feature with large frames as it will drastically
increase the amount of time that is necessary to detect faces.
I would recommend avoiding using this feature when processing multiple frames (either
from videos or streams).

Basic Face Detection

The basic face detector is the lightest weight detector and likely should be used for
when you need to simply detect faces or recognize faces.
Faces detected with this detector contain a single point for three face features:

	LEFT_EYE - A single point on the outside of the left eye

	RIGHT_EYE - A single point on the outside of the right eye

	NOSE - A single point right below the nose

Checkout the following recording of the below script for a better understanding of what
points are detected.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	from facelift.capture import iter_stream_frames
from facelift.detect import BasicFaceDetector
from facelift.window import opencv_window
from facelift.render import draw_points

detector = BasicFaceDetector()
with opencv_window() as window:
 for frame in iter_stream_frames():
 for face in detector.iter_faces(frame):
 for _, points in face.landmarks.items():
 # big colorful points so you can see what's going on
 frame = draw_points(frame, points, size=3, color=(0, 255, 0))

 window.render(frame)

 Drawing on Frames

Drawing on Frames

We’ve included a few drawing features are just quick and easy to use wrappers for some
of the builtin drawing functionality OpenCV [https://docs.opencv.org/3.4/modules.html] provides by default.
These helper functions are found in the render module.
The original reason we added these drawing helpers in was to make it easier to debug
what is being detected.

As these drawing features are already common to OpenCV [https://docs.opencv.org/3.4/modules.html], we will give just a quick
overview of what is available in this package.
For a more full description of the available parameters and constants, you should just
read through the render module auto-generated documentation.

Points

Drawing points is really simple.
If you have a single point either as an (x, y) tuple or a Point
that you want to render you can use draw_point().

	1
2
3

	from facelift.render import draw_point
frame = numpy.zeros((512, 512, 3))
frame = draw_point(frame, (64, 64), size=4)

[image: ../_images/draw_point.png]
Drawing a single point

We also provide a shorthand function for rendering either a list of (x, y) tuples or
an PointSequence called draw_points().

	1
2
3

	from facelift.render import draw_points
frame = numpy.zeros((512, 512, 3))
frame = draw_point(frame, [(64, 64), (128, 128), (256, 256)], size=4)

[image: ../_images/draw_points.png]
Drawing multiple points

Lines

If you have a list of (x, y) tuples or an PointSequence and you wish
to draw a connected line between the points, you can use the draw_line()
function.

	1
2
3

	from facelift.render import draw_line
frame = numpy.zeros((512, 512, 3))
frame = draw_line(frame, [(64, 64), (128, 128), (256, 256)], thickness=4)

[image: ../_images/draw_line.png]
Drawing a line

Shapes

Instead of having to use a combination of just points and lines to draw everything, we
have a few other functions that provide basic shape drawing.
These are still mostly all just wrappers around the default functionality that OpenCV [https://docs.opencv.org/3.4/modules.html]
provides.

Rectangles

Drawing rectangles is as simple as providing top-left and bottom-right points to draw
the rectangle between.

	1
2
3

	from facelift.render import draw_points
frame = numpy.zeros((512, 512, 3))
frame = draw_point(frame, (64, 64), (256, 256), thickness=2)

[image: ../_images/draw_rectangle.png]
Drawing a rectangle

Circles

Circles are just points with a non-negative thickness.
So to draw a circle we can utilize the included draw_point() and supply
at-least a thickness of 0.

	1
2
3

	from facelift.render import draw_point
frame = numpy.zeros((512, 512, 3))
frame = draw_point(frame, (64, 64), size=32, thickness=0)

You will probably also want to adjust the size of the point as a small enough point
will always appear filled rather than as a circle.

[image: ../_images/draw_circle.png]
Drawing a circle

Contours

If you want to use an PointSequence as the outline for a shape, you can
use the draw_contour() function.

	1
2
3

	from facelift.render import draw_contour
frame = numpy.zeros((512, 512, 3))
frame = draw_contour(frame, [(64, 64), (128, 128), (256, 256), (64, 256)])

[image: ../_images/draw_contour.png]
Drawing a triangle

Text

Drawing text is a bit more complicated than the other helper functions.
Rather than have to do some messy calls to determine width and height of specific fonts
to render text in the appropriate location, we handle drawing text by first defining a
bounding box for the text to be positioned in.
Since it is much easier to place a rectangle, drawing text within that rectangle’s
bounds is much easier in turn.
This is all handled by the draw_text() function.

In the below examples, we are drawing a red rectangle to visualize where the text lives
within the defined text container.
The defined container from the call to draw_text() will be invisible.

	1
2
3
4

	from facelift.render import draw_rectangle, draw_text
frame = numpy.zeros((512, 512, 3))
frame = draw_rectangle(frame, (64, 64), (448, 256), color=(0, 0, 255))
frame = draw_text(frame, "Hello, World!", (64, 64), (448, 256))

[image: ../_images/draw_text_default.png]
Default aligned text

You can utilize the Position enumeration to position the text within
this bounding box.
For example, if we wanted to center the text we can set both the x_position and
y_position to CENTER.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	from facelift.render import draw_rectangle, draw_text, Position
frame = numpy.zeros((512, 512, 3))
draw_rectangle(frame, (64, 64), (448, 256), color=(0, 0, 255))
frame = draw_text(
 frame,
 "Hello, World!",
 (64, 64), (448, 256),
 x_position=Position.CENTER,
 y_position=Position.CENTER
)

[image: ../_images/draw_text_centered.png]
Center aligned text

Similarly you can set both to END to place the text at the
lower left corner of the text container.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	from facelift.render import draw_rectangle, draw_text, Position
frame = numpy.zeros((512, 512, 3))
draw_rectangle(frame, (64, 64), (448, 256), color=(0, 0, 255))
frame = draw_text(
 frame,
 "Hello, World!",
 (64, 64), (448, 256),
 x_position=Position.END,
 y_position=Position.END
)

[image: ../_images/draw_text_end.png]
End aligned text

Container Overflow

If you don’t actually want to utilize the bounding box as a container, and instead want
to use it as basically just a big reference to start OpenCV [https://docs.opencv.org/3.4/modules.html]’s default text drawing, you
can set allow_overflow to True.

[image: ../_images/draw_text_default_overflow.png]
Default aligned text with allow_overflow=True

[image: ../_images/draw_text_end_overflow.png]
End aligned text with allow_overflow=True

Warning

We are not being clever enough here to handle any kind of text wrapping for the
bounding container that you define.
This container is really only used to determine where to start drawing your text
rather than keeping it all within a box.

If your text size is larger than the defined bounding container, it will overflow
(likely on the x-axis).

 Reading Frames

Reading Frames

Likely you already have some kind of content you want to detect faces from.
Whether that be a picture, a video, or your webcam, we need to be able to capture the
frames from that media so we can use them for processing.
These content types that we typically want to extract frames from are defined in
MediaType.

	
class facelift.types.MediaType(value)

	Enumeration of acceptable media types for processing.

	
IMAGE

	Defines media that contains just a single frame to process.

	
VIDEO

	Defines media that contains a known number of frames to process.

	
STREAM

	Defines media that contains an unknown number of frames to process.

If processing a media file (such as an image or a video) these media types are
automatically discovered from some magic methods available in the magic module.
There, we attempt to make a best guess at what type of content you are attempting to
capture frames from.

>>> from facelift.types import MediaType
>>> from facelift.magic import get_media_type
>>> media_type = get_media_type(Path("~/my-video.mp4"))
>>> assert media_type == MediaType.VIDEO

Actually opening and reading frames from content is typically performed using a mix of
_ functions that use completel different syntax for each of these types of media.
For most all use cases we really shouldn’t care about the differences of how
OpenCV [https://docs.opencv.org/3.4/modules.html] opens, processes, and closes media.
So we reduced the mental overhead of this process a bit and namespaced it within the
capture module.

This module’s overall purpose is to effeciently encapsulate the OpenCV [https://docs.opencv.org/3.4/modules.html] calls
necessary to capture the frames from the given media.

[image: ../_images/capture-flow.png]
Basic Capture Flow

To do this we have exposed separate generator functions.
One for handling written media files, and another for handling streamed frames.
We made the decision to keep these generators separate as they have distinct features
that would make a single generator function less explicit and intuitive.

Capturing Media Frames

To read frames from existing media files (either images or videos) you can utilize the
iter_media_frames() generator to extract sequential frames.
This function takes a pathlib.Path [https://docs.python.org/3.7/library/pathlib.html#pathlib.Path] instance and will build the appropriate
generator to capture and iterate over the available frames one at a time.

	1
2
3
4
5

	from facelift.capture import iter_media_frames
from facelift.types import Frame

for frame in iter_media_frames(Path("~/my-video.mp4")):
 assert isinstance(frame, Frame)

If you would like to loop over the available frames, the loop boolean flag can be
set to True.
This flag will seek to the starting frame automatically once all frames have been read
essentially restarting the generator.
This means that you will need to break out of the generator yourself as it will produce
an infinite loop.

	1
2

	for frame in iter_media_frames(Path("~/my-video.mp4"), loop=True):
 assert isinstance(frame, Frame)

Capturing Stream Frames

To read frames from a stream (such as a webcam) you can utilize the very similar
iter_stream_frames() generator to extract the streaming frames.
This function will scan for the first available active webcam to stream frames from.

	1
2
3
4
5

	from facelift.capture import iter_stream_frames
from facelift.types import Frame

for frame in iter_stream_frames():
 assert isinstance(frame, Frame)

If you happen to have 2 webcams available, you can pick what webcam to stream frames
from by using the indexes (0-99).
For example, if you wanted to stream frames from the second available webcam,
simply pass in index 1 to the generator:

	1
2

	for frame in iter_stream_frames(1):
 assert isinstance(frame, Frame)

Important

When capturing streamed frames, this generator will not stop until the device stream
is halted.
Typically, when processing stream frames, you should build in a mechanism to break out
of the capture loop when desireable.

In most of the below examples I will simply be raising KeyboardInterrupt [https://docs.python.org/3.7/library/exceptions.html#KeyboardInterrupt] to
break out of this loop.
You will likely want to add some kind of break conditional to this loop in your usage.

 Recognizing Faces

Recognizing Faces

Recognition is performed by producing an Encoding for a detected face.
This encoding is just an array of dimensions that should be pretty unique for that
person’s face.
The encoding itself is produced by yet another pre-trained model produced by dlib [http://dlib.net/].
This model is a ResNet [https://en.wikipedia.org/wiki/Residual_neural_network] model trained for producing identifiers for images of faces.
There are other trained models for producing identifiers for detected faces, however we
are only bundling the one produced and used by dlib [http://dlib.net/].

Encoding Faces

Similar to how we handle face detection, we also provide a
BasicFaceEncoder from the encode module.
This encoder provides a method get_encoding() which
will take a given frame and a face detected within that frame to produce an
Encoding for the face.

[image: ../_images/encode-flow.png]
Encode Flow

You can quickly get a face’s encoding from a script similar to the following:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	from pathlib import Path
from facelift.encode import BasicFaceEncoder
from facelift.detect import BasicFaceDetector
from facelift.capture import iter_media_frames

detector = BasicFaceDetector()
encoder = BasicFaceEncoder()

frame = next(iter_media_frames(Path("~/my-profile-picture.jpeg")))
face = next(detector.iter_faces(frame))
face_encoding = encoder.get_encoding(frame, face)

You will note that the name BasicFaceEncoder is very similar to
BasicFaceDetector.
This is to hopefully encourage developer’s intuition to use these two classes together
when performing face recognition.

Important

Face recognition with the BasicFaceEncoder will not work from
faces detected using the FullFaceDetector.

Although you can use faces detected from both the
BasicFaceDetector and PartialFaceDetector to get
encodings from this BasicFaceEncoder,
you should always prefer using lighter weight detector to avoid slowdown.

This module does not provide any kind of features for storing these produced
encodings; that is completely up to the implementation you are building.
You will need to find a way to store the produced encodings associated to an identifier
(such as the persons name).
For example, you could really simply store the encoding directly associated with the
person’s name by using a dictionary such as the following:

	1
2
3
4

	face_encoding = encoder.get_encoding(frame, face)
face_storage = {
 "Stephen Bunn": [face_encoding]
}

Remember that each encoding is an instance of a numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] which isn’t
immediately JSON serializable.
However, they can be converted to more common types or can be stored using pickle [https://docs.python.org/3.7/library/pickle.html#module-pickle]
or something more advanced.

Scoring Encodings

We haven’t yet actually performed any recognition yet.
But now that we have some registered encodings, we can start taking newly detected faces
and score them against our known face encodings to get a good idea whose face we are
detecting.
This scoring is provided by the score_encoding() method
which takes an unknown face encoding and a list of known faces for a single person
to see how similar they are.
The closer the score is to 0.0, the more likely that face encoding is the same as
those described in the list of known encodings.

	1
2

	known_encodings = [...]
score = encoder.score_encoding(face_encoding, known_encodings)

Note that known_encodings takes a list of encodings rather than a single encoding.
This list of encodings should always be encodings of the same person.
If you start passing in various encodings from different people, the produced score
won’t make any sense.

[image: ../_images/score-flow.png]
Score Flow

It’s probably easier to show what some very basic face recognition looks like.
Below is an example of some stored face encodings, a few of myself and a few of
Terry Crews [https://en.wikipedia.org/wiki/Terry_Crews].
The following script will iterate over the stored face encodings and determine
the best fit for each detected face my webcam stream.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

	from facelift.capture import iter_stream_frames
from facelift.window import opencv_window
from facelift.draw import draw_text
from facelift.detect import BasicFaceDetector
from facelift.encode import BasicFaceEncoder

detector = BasicFaceDetector()
encoder = BasicFaceEncoder()

known encodings for specific faces
trimmed out the actual encodings to preserve some readability
face_storage = {
 "Stephen Bunn": [...],
 "Terry Crews": [...]
}

with opencv_window() as window:
 for frame in iter_stream_frames():
 for face in detector.iter_faces(frame):
 face_encoding = encoder.get_encoding(frame, face)

 # collect scores for our storage of known encodings
 # this could be further optimized using multi-threading or better
 # storage mechanisms
 scores = []
 for name, known_encodings in face_storage.items():
 score = encoder.score_encoding(face_encoding, known_encodings)
 scores.append((score, name))

 # printing out score results for our known faces so you can see
 # what kind of scores are being produced
 print(
 "\r" + ", ".join([
 f"{name} ({score:1.2f})" for score, name in scores
]),
 end="",
)

 # get the best scored name for this face
 best_name = min(scores, key=lambda x: x[0])[-1]

 # draw the best name right above the face
 frame = draw_text(
 frame,
 best_name,
 *face.rectangle,
 font_scale=0.5,
 color=(255, 0, 0),
 x_position=Position.CENTER,
 y_position=Position.START,
 allow_overflow=True,
)

 window.render(frame)

You can see that when we are printing results in the terminal, the score for my name is
actually further from 0.0 than the score we get for Terry.
This is because I’m actually subtracting from 1.0 in this recording which is
something I forgot to remove and I’m too lazy to remake the recoding.
You can ignore the numbers being written to stdout in this case as they contradict
what you should be expecting from score_encoding().

 Rendering Frames

Rendering Frames

Now that we are reading frames in, we probably want to be able to preview what is going
to be processed.
OpenCV [https://docs.opencv.org/3.4/modules.html] provides a semi-decent window utility that we take advantage of for our basic
frame preview.
If you want to display these frames in a more production-level application, I would
recommend looking into using a canvas powered by OpenGL instead of relying on the hacky
and inflexible solution provided by OpenCV [https://docs.opencv.org/3.4/modules.html].

It is not within the scope of this project to provide an optimal canvas for
displaying the frames read in through OpenCV [https://docs.opencv.org/3.4/modules.html].
There are likely other projects out there that can display frames (numpy pixel
arrays) or a transformed variant of this frame while taking advantage of the GPU.

Regardless, for our use cases we only want to be able to quickly and cheaply preview
the frames we are processing.
To help with this, we provide a opencv_window context manager that
will create a temporary window that can be used for rendering these captured frames.

	1
2
3
4
5
6

	from facelift.capture import iter_media_frames
from facelift.window import opencv_window

with opencv_window() as window:
 for frame in iter_stream_frames():
 window.render(frame)

Here is a quick screen capture running the above example.

 Transforming Frames

Transforming Frames

Before we get to actually detecting faces, it would benefit us to know what kind of
bottlenecks we will hit and how we can avoid or reduce them.

The obvious bottleneck any kind of object detection is that the more pixels you have to
process, the longer object detection takes.
To reduce this we typically want to scale down large frames so that we don’t waste so
much time looking through all the available pixels.
This scaling operation is provided as a transformation function
scale().

	1
2
3
4
5
6
7

	from facelift.capture import iter_stream_frames
from facelift.transform import scale

for frame in iter_stream_frames():
 assert frame.shape[0] == 128
 frame = scale(frame, 0.5)
 assert frame.shape[0] == 64

By scaling down the frame to a more reasonable size, feature detection will be able to
perform much quicker as we have less pixels to run through.
This is just one example of how we can reduce bottlenecks to benefit feature detection.
However, there are many more transformations that we might need to do to benefit
dlib’s frontal face detector.

For example, what if we are processing a video shot in portrait but we are reading in
frames in landscape?
We will probably need to rotate the frame to be in portrait mode so that the faces we
are trying to detect are positioned top-down in the frame instead of left-right.
We can also do this using a provided transformation rotate().

Let’s say we want to rotate these frames -90 degrees:

	1
2
3
4
5

	from facelift.capture import iter_stream_frames
from facelift.transform import rotate

for frame in iter_stream_frames():
 frame = rotate(frame, -90)

For a full list of the available transformations we supply, I recommend you look
through the transform module’s auto-built documentation.

The goal of this module is to provide the basic transformations that you may need to
optimize face detection using our methods.
You may run into a use case where you need something we do not provide in this module.
In this case, you likely can find what you need already built into OpenCV [https://docs.opencv.org/3.4/modules.html].

Chaining Transforms

Most of the time you will end up with several necessary transformations to get the frame
in a position that is optimal for face detection.
In these cases, it’s fairly straightforward to compose multiple transforms together
through the following type of composition:

	1
2
3
4
5
6
7
8

	from facelift.capture import iter_stream_frames
from facelift.transform import scale, flip, rotate
from facelift.window import opencv_window

with opencv_window() as window:
 for frame in iter_stream_frames():
 frame = rotate(flip(scale(frame, 0.35), x_axis=True), 90)
 window.render(frame)

In this example, we are first scaling down the frame to 35%, flipping the frame on the
x-axis, and the rotating it by +90 degrees.
Potentially useful for large, inverted media files where faces are aligned left to right
rather than top-down.
Internally the frame is going through each transformation just as you would expect.

[image: ../_images/transform-flow.png]
Sample Transform Flow

This was just a quick overview of the concept of transforming frames before we attempt to
detect face features.
We will see more explicitly how transformations benefit feature detection in the next
section.

_static/assets/images/facelift.png
SN
(gﬂ {K¥ﬂ \@

_static/assets/images/score-flow.png
Bunn

0.523

_static/assets/images/encode-flow.png

_static/assets/images/facelift-icon.png

_images/basic_face_detection.gif
ol
&
&

_images/capture-flow.png
Ca

[Cerame

_static/assets/images/transform-flow.png

_static/assets/recordings/basic_face_detection.gif
ol
&
&

_images/draw_contour.png

_images/draw_line.png

_images/detect-flow.png
Landmark

_images/draw_circle.png

_images/draw_point.png

_images/draw_points.png

_images/draw_rectangle.png

nav.xhtml

 Table of Contents

 		
 User Documentation

 		
 Getting Started

 		
 System Requirements

 		
 cmake

 		
 libmagic

 		
 Package Installation

 		
 Model Installation

 		
 GPU Support

 		
 Building OpenCV

 		
 Building Dlib

 		
 Usage

 		
 Reading Frames

 		
 Capturing Media Frames

 		
 Capturing Stream Frames

 		
 Rendering Frames

 		
 Customization

 		
 Transforming Frames

 		
 Chaining Transforms

 		
 Drawing on Frames

 		
 Points

 		
 Lines

 		
 Shapes

 		
 Text

 		
 Detecting Faces

 		
 Basic Face Detection

 		
 Partial Face Detection

 		
 Full Face Detection

 		
 Recognizing Faces

 		
 Encoding Faces

 		
 Scoring Encodings

 		
 Contributing

 		
 Local Development

 		
 Installing Python

 		
 Virtual Environment

 		
 Style Enforcement

 		
 Editor Configuration

 		
 Project Tasking

 		
 Opening Issues

 		
 Creating Pull Requests

 		
 Code of Conduct

 		
 Our Pledge

 		
 Our Standards

 		
 Enforcement Responsibilities

 		
 Scope

 		
 Enforcement

 		
 Enforcement Guidelines

 		
 1. Correction

 		
 2. Warning

 		
 3. Temporary Ban

 		
 4. Permanent Ban

 		
 Attribution

 		
 Changelog

 		
 0.2.1 (2020-10-30)

 		
 Bug Fixes

 		
 0.2.0 (2020-10-30)

 		
 Miscellaneous

 		
 0.1.0 (2020-10-27)

 		
 Miscellaneous

 		
 License

 		
 Attribution

 		
 Facelift Package

 		
 facelift.types

 		
 facelift.capture

 		
 facelift.transform

 		
 facelift.magic

 		
 facelift.detect

 		
 facelift.encode

 		
 facelift.helpers

 		
 facelift.render

 		
 facelift.window

 		
 facelift._data

_images/draw_text_default_overflow.png
Hello, World!

_images/draw_text_end.png
Hello, World!

_images/draw_text_centered.png
Hello, World!

_images/draw_text_default.png
Hello, World!

_images/score-flow.png
Bunn

0.523

_images/transform-flow.png

_images/draw_text_end_overflow.png

_images/encode-flow.png

_static/facelift.png
SN
(gﬂ {K¥ﬂ \@

_static/plus.png

_static/file.png

_static/minus.png

_static/assets/images/detect-flow.png
Landmark

_static/assets/images/draw_circle.png

_static/assets/examples/basic_face_detection.png
