
Facelift Documentation
Release 0.2.1

Stephen Bunn <stephen@bunn.io>

Oct 30, 2020

CONTENTS

1 Getting Started 3

2 Usage 7

3 Contributing 29

4 Code of Conduct 33

5 Changelog 37

6 License 39

7 Attribution 41

8 Project Reference 43

Python Module Index 73

Index 75

i

ii

Facelift Documentation, Release 0.2.1

Several personal projects I’ve had in the past relied on some basic face feature detection either for face isolation, face
state detection, or some kinds of perspective estimation. I found that there are plenty of resources for learning how to
perform face detection in Python, but most of them suffer from a handful of the following issues:

1. Isn’t easy to use right out of the box.

2. Doesn’t provide face feature detection, just simple face detection.

3. Relies on older and no-longer maintained methods from cv2 for face detection.

4. Is pretty greedy in terms of memory usage and scattered method calls.

5. Doesn’t provide a selection of helpers to make face detection easier and quicker.

6. Requires that you write a whole bunch of boilerplate to get anything clean looking.

7. Or just my own personal disagreements with some of the code structure.

This project is my own attempt to provide decent face feature detection when you don’t want to think too hard about it.
We try to get as close as possible to a single pip install and still provide effective detection and recognition in Python.
However, we do have several system dependencies that are necessary, see System Requirements for more details.

Below is a simple example of full face feature detection and rendering out to a standard OpenCV window using some
of the features available in Facelift. To get started using this package, please see the Getting Started guide.

1 from facelift import FullFaceDetector, iter_stream_frames
2 from facelift.render import draw_line
3 from facelift.window import opencv_window
4

5 detector = FullFaceDetector()
6 with opencv_window() as window:
7 for frame in iter_stream_frames():
8 for face in detector.iter_faces(frame):
9 for feature, points in face.landmarks.items():

10 frame = draw_line(frame, points)
11

12 window.render(frame)

CONTENTS 1

https://docs.opencv.org/3.4/modules.html

Facelift Documentation, Release 0.2.1

2 CONTENTS

CHAPTER

ONE

GETTING STARTED

Welcome to Facelift!
This page should hopefully provide you with enough information to get the facelift package installed so you can
start detecting face features. If you run into any issues with installation, please create a Bug Report with details about
your current operating system and package version and we can try to improve our setup documentation.

1.1 System Requirements

There are several required system requirements necessary for this package to work which we unfortunately cannot
bundle in this package. The following sections will lead you through the installation of the necessary system require-
ments.

1.1.1 cmake

This tool is necessary as dlib needs to be built upon install.

Linux

Debian / Ubuntu

apt install cmake

MacOS

Homebrew

brew install cmake

Macports

port install cmake

Windows

Download the CMake installer and make sure to enable the setting to “Add CMake to the system PATH for all users”
when installing. You may need to restart your shell depending on what terminal emulator you are using in Windows.

Make sure that you can run cmake --version in your shell without recieving a non-zero exit status code to verify
your installation.

3

https://github.com/stephen-bunn/facelift/issues/new?labels=bug&template=bug-report.md
http://dlib.net/
https://cmake.org/download/

Facelift Documentation, Release 0.2.1

1.1.2 libmagic

This library helps us to determine the type of content we are attempting to process. We need this to be able to optimally
determine how to consume the data for an arbitrary media file since OpenCV is pretty lacking in this area.

Linux

Debian / Ubuntu

apt install libmagic1

MacOS

Homebrew

brew install libmagic

Macports

port install file

Windows

We install python-magic-bin as a dependency if you are installing from a Windows environment. This package should
contain working binaries for libmagic built for Windows. If you encounter unhandled errors using libmagic on
Windows, please create an issue to let us know what you are experiencing.

1.2 Package Installation

Installing the package should be super duper simple as we utilize Python’s setuptools.

$ poetry add facelift
$ # or if you're old school...
$ pip install facelift

Or you can build and install the package from the git repo.

$ git clone https://github.com/stephen-bunn/facelift.git
$ cd ./facelift
$ python setup.py install

Installing opencv-python should be quick for many environments as prebuilt packages are provided from PyPi.
If you find that you are building OpenCV on installation, it’s likely that you are installing an old version from
pythonhosted.org which does not include prebuilt binaries. This will likely cause many issues with OpenCV
not being built with proper support for GTK X11 support which is necessary for reading media and opening windows.
If you run into this, try updating your local pip to the newest version (which should install the dependency from
PyPi). Note that this dependency doesn’t come prebuilt with any GPU support.

The dlib dependency will always need to be built when installing facelift. This requires that cmake is available
on the system and doesn’t build with any GPU support.

4 Chapter 1. Getting Started

https://docs.opencv.org/3.4/modules.html
https://pypi.org/project/python-magic-bin/
https://github.com/stephen-bunn/facelift/issues
https://docs.opencv.org/3.4/modules.html
https://docs.opencv.org/3.4/modules.html

Facelift Documentation, Release 0.2.1

1.3 Model Installation

Due to PyPi’s upload limits, we cannot bundle the associated landmark and ResNet models for face detection or face
encoding. Similar to how other projects have dealt with this issue in the past, we have supplied a special module
_data to programmatically fetch the necessary pre-trained models for using this package.

The download_data() function will attempt to fetch the models uploaded to the latest GitHub release.

from facelift._data import download_data
download_data()

If for some reason we mess up and forget to upload the models to the GitHub release, you can manually specify the
release tag using the release_tag parameter. This will attempt to fetch the models from a very release instead of
the very latest.

from facelift._data import download_data
download_data(release_tag="v0.1.0")

You can also see the basic download status written out to stdout by setting the display_progress parameter
to True.

from facelift._data import download_data
download_data(display_progress=True)

I would prefer to be able to bundle the models along with the package since we are building a project revolving around
very specific feature models and frameworks (rather than providing an open-ended framework for face detection).
However, this is just something we need to do to satisfy PyPi.

Important: At the moment, the downloaded models will be placed in a data directory within the facelift
package. This means that your system or virtual environment will contain the downloaded models. If you are interested
in the absolute path that the downloaded models are being written to, you should set the display_progress flag
to True as we write out where files are being stored.

1.4 GPU Support

To drastically speed up the processing and detection of face features we need to manually build both OpenCV and
dlib for the machine’s GPU. To do this we need to override the prebuilt CPU-only libraries included in the default
installation of the package.

Tip: I’m going to try and get a guide together for building opencv-python and dlib with GPU support after a
v1.0.0 release as it is a secondary milestone for this project.

1.3. Model Installation 5

https://docs.opencv.org/3.4/modules.html
http://dlib.net/

Facelift Documentation, Release 0.2.1

1.4.1 Building OpenCV

Todo: Need to write a guide for building OpenCV with GPU support for each platform.

1.4.2 Building Dlib

Todo: Need to write a guide for building dlib with GPU support for each platform.

6 Chapter 1. Getting Started

https://docs.opencv.org/3.4/modules.html
http://dlib.net/

CHAPTER

TWO

USAGE

Before we get started learning how to use the methods provided by Facelift Package, we have some basic terminology
to define. The types module provides these following types/terms which we use throughout the package. We use
these terms though most of our documentation, so make sure you take a peek at the responsibility of these names.

• Frame

Defines a single matrix of pixels representing an image (or a single frame).
Represented by a numpy.ndarray using the shape (Any, Any, 3) of type numpy.uint8.
These frames are pulled out of some media or stream and is used as the source content to try and detect faces
from.

• Point

Describes an (x, y) coordinate relative to a specific frame.
Represented by a numpy.ndarray of shape (2,) of type numpy.int64.

• PointSequence

Describes a sequence of points that typically define a feature.
Represented by a numpy.ndarray of shape (Any, 2) of type numpy.int64.

• FaceFeature

An enum of available face features to detect (such as an eye or the nose).
Represented by a PointSequence.

• Face

Defines a detected face containing the landmarks and bounding frame of the face.
Represented by a custom dataclasses.dataclass() using a dictionary of FaceFeature to
PointSequence to describe the detected face features.

• Encoding

Describes an encoded face frame that can later be used to recognize the same face.
Represented by a numpy.ndarray of shape (128,) of type numpy.int64

7

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3.7/library/dataclasses.html#dataclasses.dataclass
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

Facelift Documentation, Release 0.2.1

2.1 Reading Frames

Likely you already have some kind of content you want to detect faces from. Whether that be a picture, a video, or
your webcam, we need to be able to capture the frames from that media so we can use them for processing. These
content types that we typically want to extract frames from are defined in MediaType.

class facelift.types.MediaType(value)
Enumeration of acceptable media types for processing.

IMAGE
Defines media that contains just a single frame to process.

VIDEO
Defines media that contains a known number of frames to process.

STREAM
Defines media that contains an unknown number of frames to process.

If processing a media file (such as an image or a video) these media types are automatically discovered from some
magic methods available in the magic module. There, we attempt to make a best guess at what type of content you
are attempting to capture frames from.

>>> from facelift.types import MediaType
>>> from facelift.magic import get_media_type
>>> media_type = get_media_type(Path("~/my-video.mp4"))
>>> assert media_type == MediaType.VIDEO

Actually opening and reading frames from content is typically performed using a mix of _ functions that use completel
different syntax for each of these types of media. For most all use cases we really shouldn’t care about the differences
of how OpenCV opens, processes, and closes media. So we reduced the mental overhead of this process a bit and
namespaced it within the capture module.

This module’s overall purpose is to effeciently encapsulate the OpenCV calls necessary to capture the
frames from the given media.

To do this we have exposed separate generator functions. One for handling written media files, and another for
handling streamed frames. We made the decision to keep these generators separate as they have distinct features that
would make a single generator function less explicit and intuitive.

2.1.1 Capturing Media Frames

To read frames from existing media files (either images or videos) you can utilize the iter_media_frames()
generator to extract sequential frames. This function takes a pathlib.Path instance and will build the appropriate
generator to capture and iterate over the available frames one at a time.

1 from facelift.capture import iter_media_frames
2 from facelift.types import Frame
3

4 for frame in iter_media_frames(Path("~/my-video.mp4")):
5 assert isinstance(frame, Frame)

If you would like to loop over the available frames, the loop boolean flag can be set to True. This flag will seek to
the starting frame automatically once all frames have been read essentially restarting the generator. This means that
you will need to break out of the generator yourself as it will produce an infinite loop.

1 for frame in iter_media_frames(Path("~/my-video.mp4"), loop=True):
2 assert isinstance(frame, Frame)

8 Chapter 2. Usage

https://docs.opencv.org/3.4/modules.html
https://docs.opencv.org/3.4/modules.html
https://docs.python.org/3.7/library/pathlib.html#pathlib.Path

Facelift Documentation, Release 0.2.1

Fig. 1: Basic Capture Flow

2.1.2 Capturing Stream Frames

To read frames from a stream (such as a webcam) you can utilize the very similar iter_stream_frames()
generator to extract the streaming frames. This function will scan for the first available active webcam to stream
frames from.

1 from facelift.capture import iter_stream_frames
2 from facelift.types import Frame
3

4 for frame in iter_stream_frames():
5 assert isinstance(frame, Frame)

If you happen to have 2 webcams available, you can pick what webcam to stream frames from by using the indexes
(0-99). For example, if you wanted to stream frames from the second available webcam, simply pass in index 1 to the
generator:

1 for frame in iter_stream_frames(1):
2 assert isinstance(frame, Frame)

Important: When capturing streamed frames, this generator will not stop until the device stream is halted. Typically,
when processing stream frames, you should build in a mechanism to break out of the capture loop when desireable.

In most of the below examples I will simply be raising KeyboardInterrupt to break out of this loop. You will
likely want to add some kind of break conditional to this loop in your usage.

2.1. Reading Frames 9

https://docs.python.org/3.7/library/exceptions.html#KeyboardInterrupt

Facelift Documentation, Release 0.2.1

2.2 Rendering Frames

Now that we are reading frames in, we probably want to be able to preview what is going to be processed. OpenCV
provides a semi-decent window utility that we take advantage of for our basic frame preview. If you want to display
these frames in a more production-level application, I would recommend looking into using a canvas powered by
OpenGL instead of relying on the hacky and inflexible solution provided by OpenCV.

It is not within the scope of this project to provide an optimal canvas for displaying the frames read in
through OpenCV. There are likely other projects out there that can display frames (numpy pixel arrays)
or a transformed variant of this frame while taking advantage of the GPU.

Regardless, for our use cases we only want to be able to quickly and cheaply preview the frames we are processing.
To help with this, we provide a opencv_window context manager that will create a temporary window that can be
used for rendering these captured frames.

1 from facelift.capture import iter_media_frames
2 from facelift.window import opencv_window
3

4 with opencv_window() as window:
5 for frame in iter_stream_frames():
6 window.render(frame)

Here is a quick screen capture running the above example.

Note that since this window helper is a context manager, the window will destroy itself once there are no more frames to
process and we break out of the frame generator. In the above example, I am simply raising a KeyboardInterrupt
by pressing Ctrl+C, but you can be much more clever about it in your usage.

2.2.1 Customization

There are several available options that allow you to slightly tweak the created window. The options are fairly limited
as we are just forwarding the desired tweaks to the creation of the window in OpenCV. Don’t expect much in terms of
flexibility of customization for these windows.

Window Title

By default, we throw a “Facelift” title on the created window.
You can override this by passing in a title to the context manager:

1 with opencv_window(title="My Window") as window:
2 ...

This title will be used to also destroy the window as OpenCV naively destroys windows based on window titles. This
isn’t such a big issue as OpenCV (and in turn the opencv_window manager) doesn’t allow mutation of a window
title once the window is opened.

10 Chapter 2. Usage

https://docs.opencv.org/3.4/modules.html
https://docs.opencv.org/3.4/modules.html
https://docs.opencv.org/3.4/modules.html
https://docs.python.org/3.7/library/exceptions.html#KeyboardInterrupt
https://docs.opencv.org/3.4/modules.html
https://docs.opencv.org/3.4/modules.html
https://docs.opencv.org/3.4/modules.html

Facelift Documentation, Release 0.2.1

Window Style

OpenCV windows have several different style features they can pick and choose from. These features are defined in
the WindowStyle object and can be joined together with the boolean | and passed through to the style parameter.

1 from facelift.window import opencv_window, WindowStyle
2

3 with opencv_window(style=WindowStyle.GUI_EXPANDED | WindowStyle.KEEP_RATIO) as window:
4 ...

By default the window will use the DEFAULT window style which is a combination of some of other available window
styles. If you actually need to use a custom window style, I encourage that you play around with these options yourself
to see what works best for you.

Display Delay

The delay at which OpenCV attempts to render frames is another feature that can be controlled. This is fairly useful
when you want to slow down the frames being rendered in the window rather than the speed at which frames are being
read. This delay is defined in milliseconds as an integer and is defaulted to 1.

1 from facelift.capture import iter_stream_frames
2 from facelift.window import opencv_window
3

4 with opencv_window(delay=1000) as window: # wait 1 second between displaying frames
5 for frame in iter_stream_frames():
6 window.render(frame)

Note that you can also handle do this yourself with a simple time.sleep() prior or post a render() call. That
solution may be a better path forward if you are running into issues with the delay parameter.

Warning: This delay must be greater than 0. We have a validation step in the creation of the window to ensure
that it is not initialized to 0. However, you can still get around this initial check by setting delay on the created
window context instance. For example, you can technically do the following:

>>> from facelift.window import opencv_window
>>> with opencv_window(delay=1) as window:
... window.delay = 0

This will very likely break the frame rendering as OpenCV will enter a waiting state with no refresh interval when
the window delay is set to 0.

Display Step

Sometimes you want to pause on each frame to essentially prompt for user interaction when rendering frames. This
feature is particularly useful when attempting to render single frames (such as those from images) as the generator will
immediately exit and could exit the window context manager which will destroy the window.

For example, the following sample will immediately create a window and then quickly close it as the
iter_media_frames() generator will immediately read the image and immediately exit the window’s context
manager:

1 with opencv_window() as window:
2 for frame in iter_media_frames(Path("~/my-image.jpeg")):
3 window.render(frame)

2.2. Rendering Frames 11

https://docs.opencv.org/3.4/modules.html
https://docs.opencv.org/3.4/modules.html
https://docs.python.org/3.7/library/time.html#time.sleep
https://docs.opencv.org/3.4/modules.html

Facelift Documentation, Release 0.2.1

If you would like to force the window to await user input to render the next frame every time render() is called,
you can use the step and step_key arguments.

1 with opencv_window(step=True, step_key=0x20) as window:
2 ...

In the above example, since we have enabled step and defined the step key to be 0x20, our window will wait for the
user to press [Space] (ASCII 36 or 0x20) before rendering the next frame.

2.3 Transforming Frames

Before we get to actually detecting faces, it would benefit us to know what kind of bottlenecks we will hit and how we
can avoid or reduce them.

The obvious bottleneck any kind of object detection is that the more pixels you have to process, the longer object
detection takes. To reduce this we typically want to scale down large frames so that we don’t waste so much time
looking through all the available pixels. This scaling operation is provided as a transformation function scale().

1 from facelift.capture import iter_stream_frames
2 from facelift.transform import scale
3

4 for frame in iter_stream_frames():
5 assert frame.shape[0] == 128
6 frame = scale(frame, 0.5)
7 assert frame.shape[0] == 64

By scaling down the frame to a more reasonable size, feature detection will be able to perform much quicker as we
have less pixels to run through. This is just one example of how we can reduce bottlenecks to benefit feature detection.
However, there are many more transformations that we might need to do to benefit dlib’s frontal face detector.

For example, what if we are processing a video shot in portrait but we are reading in frames in landscape? We will
probably need to rotate the frame to be in portrait mode so that the faces we are trying to detect are positioned top-down
in the frame instead of left-right. We can also do this using a provided transformation rotate().

Let’s say we want to rotate these frames -90 degrees:

1 from facelift.capture import iter_stream_frames
2 from facelift.transform import rotate
3

4 for frame in iter_stream_frames():
5 frame = rotate(frame, -90)

For a full list of the available transformations we supply, I recommend you look through the transform module’s
auto-built documentation.

The goal of this module is to provide the basic transformations that you may need to optimize face detection using our
methods. You may run into a use case where you need something we do not provide in this module. In this case, you
likely can find what you need already built into OpenCV.

12 Chapter 2. Usage

https://docs.opencv.org/3.4/modules.html

Facelift Documentation, Release 0.2.1

2.3.1 Chaining Transforms

Most of the time you will end up with several necessary transformations to get the frame in a position that is optimal
for face detection. In these cases, it’s fairly straightforward to compose multiple transforms together through the
following type of composition:

1 from facelift.capture import iter_stream_frames
2 from facelift.transform import scale, flip, rotate
3 from facelift.window import opencv_window
4

5 with opencv_window() as window:
6 for frame in iter_stream_frames():
7 frame = rotate(flip(scale(frame, 0.35), x_axis=True), 90)
8 window.render(frame)

In this example, we are first scaling down the frame to 35%, flipping the frame on the x-axis, and the rotating it by +90
degrees. Potentially useful for large, inverted media files where faces are aligned left to right rather than top-down.
Internally the frame is going through each transformation just as you would expect.

Fig. 2: Sample Transform Flow

This was just a quick overview of the concept of transforming frames before we attempt to detect face features. We
will see more explicitly how transformations benefit feature detection in the next section.

2.3. Transforming Frames 13

Facelift Documentation, Release 0.2.1

2.4 Drawing on Frames

We’ve included a few drawing features are just quick and easy to use wrappers for some of the builtin drawing
functionality OpenCV provides by default. These helper functions are found in the render module. The original
reason we added these drawing helpers in was to make it easier to debug what is being detected.

As these drawing features are already common to OpenCV, we will give just a quick overview of what is available in
this package. For a more full description of the available parameters and constants, you should just read through the
render module auto-generated documentation.

2.4.1 Points

Drawing points is really simple. If you have a single point either as an (x, y) tuple or a Point that you want to
render you can use draw_point().

1 from facelift.render import draw_point
2 frame = numpy.zeros((512, 512, 3))
3 frame = draw_point(frame, (64, 64), size=4)

Fig. 3: Drawing a single point

We also provide a shorthand function for rendering either a list of (x, y) tuples or an PointSequence called
draw_points().

1 from facelift.render import draw_points
2 frame = numpy.zeros((512, 512, 3))
3 frame = draw_point(frame, [(64, 64), (128, 128), (256, 256)], size=4)

14 Chapter 2. Usage

https://docs.opencv.org/3.4/modules.html
https://docs.opencv.org/3.4/modules.html

Facelift Documentation, Release 0.2.1

Fig. 4: Drawing multiple points

2.4.2 Lines

If you have a list of (x, y) tuples or an PointSequence and you wish to draw a connected line between the
points, you can use the draw_line() function.

1 from facelift.render import draw_line
2 frame = numpy.zeros((512, 512, 3))
3 frame = draw_line(frame, [(64, 64), (128, 128), (256, 256)], thickness=4)

Fig. 5: Drawing a line

2.4. Drawing on Frames 15

Facelift Documentation, Release 0.2.1

2.4.3 Shapes

Instead of having to use a combination of just points and lines to draw everything, we have a few other functions that
provide basic shape drawing. These are still mostly all just wrappers around the default functionality that OpenCV
provides.

Rectangles

Drawing rectangles is as simple as providing top-left and bottom-right points to draw the rectangle between.

1 from facelift.render import draw_points
2 frame = numpy.zeros((512, 512, 3))
3 frame = draw_point(frame, (64, 64), (256, 256), thickness=2)

Fig. 6: Drawing a rectangle

Circles

Circles are just points with a non-negative thickness. So to draw a circle we can utilize the included draw_point()
and supply at-least a thickness of 0.

1 from facelift.render import draw_point
2 frame = numpy.zeros((512, 512, 3))
3 frame = draw_point(frame, (64, 64), size=32, thickness=0)

You will probably also want to adjust the size of the point as a small enough point will always appear filled rather
than as a circle.

16 Chapter 2. Usage

https://docs.opencv.org/3.4/modules.html

Facelift Documentation, Release 0.2.1

Fig. 7: Drawing a circle

Contours

If you want to use an PointSequence as the outline for a shape, you can use the draw_contour() function.

1 from facelift.render import draw_contour
2 frame = numpy.zeros((512, 512, 3))
3 frame = draw_contour(frame, [(64, 64), (128, 128), (256, 256), (64, 256)])

Fig. 8: Drawing a triangle

2.4. Drawing on Frames 17

Facelift Documentation, Release 0.2.1

2.4.4 Text

Drawing text is a bit more complicated than the other helper functions. Rather than have to do some messy calls to
determine width and height of specific fonts to render text in the appropriate location, we handle drawing text by first
defining a bounding box for the text to be positioned in. Since it is much easier to place a rectangle, drawing text
within that rectangle’s bounds is much easier in turn. This is all handled by the draw_text() function.

In the below examples, we are drawing a red rectangle to visualize where the text lives within the defined text container.
The defined container from the call to draw_text() will be invisible.

1 from facelift.render import draw_rectangle, draw_text
2 frame = numpy.zeros((512, 512, 3))
3 frame = draw_rectangle(frame, (64, 64), (448, 256), color=(0, 0, 255))
4 frame = draw_text(frame, "Hello, World!", (64, 64), (448, 256))

Fig. 9: Default aligned text

You can utilize the Position enumeration to position the text within this bounding box. For example, if we wanted
to center the text we can set both the x_position and y_position to CENTER.

1 from facelift.render import draw_rectangle, draw_text, Position
2 frame = numpy.zeros((512, 512, 3))
3 draw_rectangle(frame, (64, 64), (448, 256), color=(0, 0, 255))
4 frame = draw_text(
5 frame,
6 "Hello, World!",
7 (64, 64), (448, 256),
8 x_position=Position.CENTER,
9 y_position=Position.CENTER

10)

Similarly you can set both to END to place the text at the lower left corner of the text container.

1 from facelift.render import draw_rectangle, draw_text, Position
2 frame = numpy.zeros((512, 512, 3))
3 draw_rectangle(frame, (64, 64), (448, 256), color=(0, 0, 255))
4 frame = draw_text(
5 frame,

(continues on next page)

18 Chapter 2. Usage

Facelift Documentation, Release 0.2.1

Fig. 10: Center aligned text

(continued from previous page)

6 "Hello, World!",
7 (64, 64), (448, 256),
8 x_position=Position.END,
9 y_position=Position.END

10)

Fig. 11: End aligned text

2.4. Drawing on Frames 19

Facelift Documentation, Release 0.2.1

Container Overflow

If you don’t actually want to utilize the bounding box as a container, and instead want to use it as basically just a big
reference to start OpenCV’s default text drawing, you can set allow_overflow to True.

Fig. 12: Default aligned text with allow_overflow=True

Fig. 13: End aligned text with allow_overflow=True

Warning: We are not being clever enough here to handle any kind of text wrapping for the bounding container
that you define. This container is really only used to determine where to start drawing your text rather than keeping
it all within a box.

If your text size is larger than the defined bounding container, it will overflow (likely on the x-axis).

20 Chapter 2. Usage

https://docs.opencv.org/3.4/modules.html

Facelift Documentation, Release 0.2.1

2.5 Detecting Faces

Now onto the fun part. Face feature detection is powered by good ol’ dlib. As part of this package, we have provided
3 pre-trained landmark models for face features each detecting various different face landmarks.

Tip: To learn how to acquire these models, please see the Model Installation documentation.

The face features (interchangeably termed landmarks) we are able to detect are classified in the FaceFeature
enumeration.

The landmark models are programmatically provided through the following BaseLandmarkDetector subclasses:

• BasicFaceDetector

• PartialFaceDetector

• FullFaceDetector

Although each of these detectors operates essentially the same way, they produce different results and have various
caveats that you would benefit from knowing. We will be covering the ins and outs of each of these detectors in the
following related sections.

But first, a few helpful details on how subclasses of BaseLandmarkDetector work. Each subclass will contain
a reference to a file location where the trained landmark model exists. Upon instantiation of the subclass, that model
will be open and read into memory which can take longer than a second in some cases (given the size of the model).

1 from facelift.detect import BasicFaceDetector
2 BasicFaceDetector.model_filepath # filepath to the related trained landmark model
3 detector = BasicFaceDetector() # trained model is opened and loaded into memory

Each instance of these subclass comes with a helpful little generator that will produce instances of Face for a given
Frame. This generator is called iter_faces() and will utilize the loaded model to handle feature detection
automagically .

1 from facelift.types import Face
2 from facelift.capture import iter_stream_frames
3 from facelift.detect import BasicFaceDetector
4

5 detector = BasicFaceDetector()
6 for frame in iter_stream_frames():
7 for face in detector.iter_faces(frame):
8 assert isinstance(face, Face)

Each generated face represents a single set of face landmarks detected from the given frame. The accuracy of this
detection is wholely the responsibility of the trained model (although you can typically benefit it by transforming the
frame into an optimal state before attempting to perform detection).

If you are finding that the face landmark models we install are not as accurate as you require, you should look further
into training your own landmark models for dlib. Note that this is not a trivial task.

Tip: The iter_faces() generator comes with a parameter called upsample that is defaulted to 0. If you are
having to detect faces from really small frames, setting this parameter to a positive value will attempt to optimally
upsample the frame using dlib’s builtin utilities.

1 for frame in iter_stream_frames():
2 for face in detector.iter_faces(frame, upsample=2):
3 assert isinstance(face, Face)

2.5. Detecting Faces 21

http://dlib.net/
http://dlib.net/
http://dlib.net/

Facelift Documentation, Release 0.2.1

Fig. 14: Detect Flow

Be cautious about using this feature with large frames as it will drastically increase the amount of time that is necessary
to detect faces. I would recommend avoiding using this feature when processing multiple frames (either from videos
or streams).

2.5.1 Basic Face Detection

The basic face detector is the lightest weight detector and likely should be used for when you need to simply detect
faces or recognize faces. Faces detected with this detector contain a single point for three face features:

• LEFT_EYE - A single point on the outside of the left eye

• RIGHT_EYE - A single point on the outside of the right eye

• NOSE - A single point right below the nose

Checkout the following recording of the below script for a better understanding of what points are detected.

1 from facelift.capture import iter_stream_frames
2 from facelift.detect import BasicFaceDetector
3 from facelift.window import opencv_window
4 from facelift.render import draw_points
5

6 detector = BasicFaceDetector()
7 with opencv_window() as window:
8 for frame in iter_stream_frames():
9 for face in detector.iter_faces(frame):

10 for _, points in face.landmarks.items():

(continues on next page)

22 Chapter 2. Usage

Facelift Documentation, Release 0.2.1

(continued from previous page)

11 # big colorful points so you can see what's going on
12 frame = draw_points(frame, points, size=3, color=(0, 255, 0))
13

14 window.render(frame)

Because the features we are detecting are just single points, we really can’t do much to determine a face’s state (such as
if eyes are opened or closed). However, we can determine where a face is placed and what angle the face is tilted within
the frame. This is particularly helpful as we usually want to extract normalized frames with a properly positioned face
for more accurate face recognition.

As an example of this, we have included the helpers module with some examples of basic face positioning math
to extract frames where the face is always centered and angled correctly. The helper function that provides this
appropriate face positioning functionality is get_normalized_frame(). You can use it by simply passing both
the starting frame and a detected face:

1 from facelift.capture import iter_stream_frames
2 from facelift.detect import BasicFaceDetector
3 from facelift.window import opencv_window
4 from facelift.helpers import get_normalized_frame
5

6 detector = BasicFaceDetector()
7 with opencv_window() as window:
8 for frame in iter_stream_frames():
9 for face in detector.iter_faces(frame):

10 frame = get_normalized_frame(frame, face)
11

12 window.render(frame)

Overall, the BasicFaceDetector is useful for quick face detection where your only desire is to extract a face
from a frame.

2.5.2 Partial Face Detection

The PartialFaceDetector uses the heaviest of the three landmark models (likely since it was trained the most
rigorously of the three). This detector detects all face features except for the FOREHEAD feature. Each detected
feature is a PointSequence and can be used to render the outline of the detected face.

1 from facelift.capture import iter_stream_frames
2 from facelift.detect import PartialFaceDetector
3 from facelift.window import opencv_window
4 from facelift.render import draw_points
5

6 detector = PartialFaceDetector()
7 with opencv_window() as window:
8 for frame in iter_stream_frames():
9 for face in detector.iter_faces(frame):

10 for _, points in face.landmarks.items():
11 frame = draw_points(frame, points, color=(0, 255, 0))
12

13 window.render(frame)

Because this detector is discovering multiple points for a single face feature, we can use these points to actually build
a pretty good representation of the face.

2.5. Detecting Faces 23

Facelift Documentation, Release 0.2.1

2.5.3 Full Face Detection

The FullFaceDetector is a third-party trained model that includes detection of all FaceFeature features.
With the addition of the FOREHEAD feature, we can also include the curvature and angle of the forehead.

1 from facelift.capture import iter_stream_frames
2 from facelift.detect import FullFaceDetector
3 from facelift.window import opencv_window
4 from facelift.render import draw_points
5

6 detector = FullFaceDetector()
7 with opencv_window() as window:
8 for frame in iter_stream_frames():
9 for face in detector.iter_faces(frame):

10 for _, points in face.landmarks.items():
11 frame = draw_points(frame, points, color=(0, 255, 0))
12

13 window.render(frame)

This model is not as heavily trained as the PartialFaceDetector so you may see some inconsistencies between
the two detectors. Regardless, with the inclusion of the FOREHEAD feature, you get another dimension to work with
that may be valuable for your use case.

2.6 Recognizing Faces

Recognition is performed by producing an Encoding for a detected face. This encoding is just an array of dimensions
that should be pretty unique for that person’s face. The encoding itself is produced by yet another pre-trained model
produced by dlib. This model is a ResNet model trained for producing identifiers for images of faces. There are other
trained models for producing identifiers for detected faces, however we are only bundling the one produced and used
by dlib.

2.6.1 Encoding Faces

Similar to how we handle face detection, we also provide a BasicFaceEncoder from the encode module. This
encoder provides a method get_encoding() which will take a given frame and a face detected within that frame
to produce an Encoding for the face.

You can quickly get a face’s encoding from a script similar to the following:

1 from pathlib import Path
2 from facelift.encode import BasicFaceEncoder
3 from facelift.detect import BasicFaceDetector
4 from facelift.capture import iter_media_frames
5

6 detector = BasicFaceDetector()
7 encoder = BasicFaceEncoder()
8

9 frame = next(iter_media_frames(Path("~/my-profile-picture.jpeg")))
10 face = next(detector.iter_faces(frame))
11 face_encoding = encoder.get_encoding(frame, face)

You will note that the name BasicFaceEncoder is very similar to BasicFaceDetector. This is to hopefully
encourage developer’s intuition to use these two classes together when performing face recognition.

24 Chapter 2. Usage

http://dlib.net/
https://en.wikipedia.org/wiki/Residual_neural_network
http://dlib.net/

Facelift Documentation, Release 0.2.1

Fig. 15: Encode Flow

Important: Face recognition with the BasicFaceEncoder will not work from faces detected using the
FullFaceDetector.

Although you can use faces detected from both the BasicFaceDetector and PartialFaceDetector to get
encodings from this BasicFaceEncoder, you should always prefer using lighter weight detector to avoid
slowdown.

This module does not provide any kind of features for storing these produced encodings; that is completely up to
the implementation you are building. You will need to find a way to store the produced encodings associated to an
identifier (such as the persons name). For example, you could really simply store the encoding directly associated with
the person’s name by using a dictionary such as the following:

1 face_encoding = encoder.get_encoding(frame, face)
2 face_storage = {
3 "Stephen Bunn": [face_encoding]
4 }

Remember that each encoding is an instance of a numpy.ndarray which isn’t immediately JSON serializable.
However, they can be converted to more common types or can be stored using pickle or something more advanced.

2.6. Recognizing Faces 25

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3.7/library/pickle.html#module-pickle

Facelift Documentation, Release 0.2.1

2.6.2 Scoring Encodings

We haven’t yet actually performed any recognition yet. But now that we have some registered encodings, we can start
taking newly detected faces and score them against our known face encodings to get a good idea whose face we are
detecting. This scoring is provided by the score_encoding() method which takes an unknown face encoding and
a list of known faces for a single person to see how similar they are. The closer the score is to 0.0, the more likely
that face encoding is the same as those described in the list of known encodings.

1 known_encodings = [...]
2 score = encoder.score_encoding(face_encoding, known_encodings)

Note that known_encodings takes a list of encodings rather than a single encoding. This list of encodings should
always be encodings of the same person. If you start passing in various encodings from different people, the produced
score won’t make any sense.

Fig. 16: Score Flow

It’s probably easier to show what some very basic face recognition looks like. Below is an example of some stored face
encodings, a few of myself and a few of Terry Crews. The following script will iterate over the stored face encodings
and determine the best fit for each detected face my webcam stream.

1 from facelift.capture import iter_stream_frames
2 from facelift.window import opencv_window
3 from facelift.draw import draw_text
4 from facelift.detect import BasicFaceDetector
5 from facelift.encode import BasicFaceEncoder
6

7 detector = BasicFaceDetector()
8 encoder = BasicFaceEncoder()
9

(continues on next page)

26 Chapter 2. Usage

https://en.wikipedia.org/wiki/Terry_Crews

Facelift Documentation, Release 0.2.1

(continued from previous page)

10 # known encodings for specific faces
11 # trimmed out the actual encodings to preserve some readability
12 face_storage = {
13 "Stephen Bunn": [...],
14 "Terry Crews": [...]
15 }
16

17 with opencv_window() as window:
18 for frame in iter_stream_frames():
19 for face in detector.iter_faces(frame):
20 face_encoding = encoder.get_encoding(frame, face)
21

22 # collect scores for our storage of known encodings
23 # this could be further optimized using multi-threading or better
24 # storage mechanisms
25 scores = []
26 for name, known_encodings in face_storage.items():
27 score = encoder.score_encoding(face_encoding, known_encodings)
28 scores.append((score, name))
29

30 # printing out score results for our known faces so you can see
31 # what kind of scores are being produced
32 print(
33 "\r" + ", ".join([
34 f"{name} ({score:1.2f})" for score, name in scores
35]),
36 end="",
37)
38

39 # get the best scored name for this face
40 best_name = min(scores, key=lambda x: x[0])[-1]
41

42 # draw the best name right above the face
43 frame = draw_text(
44 frame,
45 best_name,
46 *face.rectangle,
47 font_scale=0.5,
48 color=(255, 0, 0),
49 x_position=Position.CENTER,
50 y_position=Position.START,
51 allow_overflow=True,
52)
53

54 window.render(frame)

You can see that when we are printing results in the terminal, the score for my name is actually further from 0.0 than
the score we get for Terry. This is because I’m actually subtracting from 1.0 in this recording which is something I
forgot to remove and I’m too lazy to remake the recoding. You can ignore the numbers being written to stdout in
this case as they contradict what you should be expecting from score_encoding().

And here is a run of the same script but with both me and a picture of Terry. You can see that my face tone is darker as
I had to close some blinds to avoid screen glare off of my phone. That screen glare was causing some obvious issues
with detecting Terry’s face.

Of course, you can optimize this a bit, but for the purposes of demonstration we left it as simple and readable as
possible.

2.6. Recognizing Faces 27

Facelift Documentation, Release 0.2.1

At this point you should have enough details to get started using some of the features available in this package. If you
find anything that you think could be improved, you can interact with development in the Facelift GitHub repository.

Thanks for reading through these docs!

28 Chapter 2. Usage

https://github.com/stephen-bunn/facelift/

CHAPTER

THREE

CONTRIBUTING

Important: When contributing to this repository, please adhere to our Code of Conduct and first discuss the change
you wish to make via an issue before submitting a pull request.

3.1 Local Development

The following sections will guide you through setting up a local development environment for working on this project
package. At the very least, make sure that you have the necessary pre-commit hooks installed to make sure that all
commits are pristine before they make it into the change history.

3.1.1 Installing Python

Note: If you already have Python 3.7+ installed on your local system, you can skip this step completely.

Installing Python should be done through pyenv. To first install pyenv please follow the guide they provided at
https://github.com/pyenv/pyenv#installation. When you finally have pyenv you should be good to continue on.

$ pyenv --version
pyenv x.x.x

Now that you have pyenv we can install the necessary Python version. This project’s package depends on Python
3.7+, so we can request that through pyenv.

$ pyenv install 3.7 # to install Python 3.7+
...

$ pwd
/PATH/TO/CLONED/REPOSITORY/project-name
$ pyenv local 3.7 # to mark the project directory as needing Python 3.7+
...

$ pyenv global 3.7 # if you wish Python 3.7 to be aliased to `python` everywhere
...

After installing and marking the repository as requiring Python 3.7+ you should be good to continue on installing the
project’s dependencies.

29

https://github.com/pyenv/pyenv
https://github.com/pyenv/pyenv#installation

Facelift Documentation, Release 0.2.1

3.1.2 Virtual Environment

We use Poetry to manage both our dependencies and virtual environments. Setting up poetry just involves installing
it through pip as a user-level dependency.

$ pip install --user poetry
Collecting poetry
Downloading poetry-x.x.x-py2.py3-non-any.whl
...

You can quickly setup your entire development environment by running the installation process from poetry.

$ poetry install
Installing dependencies from lock file
...

This with create a virtual environment for you and install the necesary development dependencies. From there you can
jump into a subshell using the newly created virtual environment using the shell subcommand.

$ poetry shell
spawning shell within ~/.local/share/virtualenvs/my-project-py3.7
...

$ exit # when you wish to exit the subshell

From this shell you have access to all the necessary development dependencies installed in the virutal environment
and can start actually writing and running code within the client package.

3.1.3 Style Enforcement

This project’s preferred styles are fully enforced through pre-commit hooks. In order to take advantage of these hooks
please make sure that you have pre-commit and the configured hooks installed in your local environment.

Installing pre-commit is done through pip and should be installed as a user-level dependency as it adds some
console scripts that all projects using pre-commit will need.

$ pip install --user pre-commit
Collecting pre-commit
Downloading pre_commit-x.x.x-py2.py3-none-any.whl
...

$ pre-commit --version
pre-commit 2.4.0

Once pre-commit is installed you should also install the hooks into the cloned repository.

$ pwd
/PATH/TO/CLONED/REPOSITORY/project-name

$ pre-commit install
pre-commit installed at .git/hooks/pre-commit

After this you should be good to continue on. These installed hooks will do a first-time setup when you attempt your
next commit to build hook environments. Changes that violate the defined style specifications in setup.cfg and
pyproject.toml will cause the commit to fail and will likely make the necessary changes to added / changed files
to be written to the failing files.

30 Chapter 3. Contributing

https://python-poetry.org/
https://pre-commit.com/

Facelift Documentation, Release 0.2.1

This will give you the opprotunity to view the changes the hooks made to the failing files and add the new changes to
the commit in order to make the commit pass. It also gives you the opprotunity to make tweaks to the autogenerated
changes to make them more human accessible (only if necessary).

3.1.4 Editor Configuration

We also have some specific settings for editor configuration via editorconfig. We recommend you install the appropri-
ate plugin for your editor of choice if your editor doesn’t already natively support .editorconfig configuration
files.

3.1.5 Project Tasking

All of our tasks are built and run through invoke which is basically just a more advanced (a little too advanced) Python
alternative to make. The only reason we are using this utility is because I know how it works and I already had most
of the necessary tasks defined from other projects.

From within the Poetry subshell, you can access and run these commands through the provided invoke development
dependency.

$ invoke --list
Available tasks:

build Build the project.
clean Clean the project.
lint Lint the project.
profile Run and profile a given Python script.
test Test the project.
docs.build Build docs.
docs.build-news Build towncrier newsfragments.
docs.clean Clean built docs.
docs.view Build and view docs.
linter.black Run Black tool check against source.
linter.flake8 Run Flake8 tool against source.
linter.isort Run ISort tool check against source.
linter.mypy Run MyPy tool check against source.
package.build Build pacakge source files.
package.check Check built package is valid.
package.clean Clean previously built package artifacts.
package.coverage Build coverage report for test run.
package.format Auto format package source files.
package.requirements Generate requirements.txt from Poetry's lock.
package.stub Generate typing stubs for the package.
package.test Run package tests.
package.typecheck Run type checking with generated package stubs.

You can run these tasks to do many miscellaneous project tasks such as building documentation.

$ invoke docs.build
[docs.build] ... building 'html' documentation
Running Sphinx v3.0.3
loading pickled environment... done
building [mo]: targets for 0 po files that are out of date
building [html]: targets for 0 source files that are out of date
updating environment: 0 added, 0 changed, 0 removed
looking for now-outdated files... none found

(continues on next page)

3.1. Local Development 31

https://editorconfig.org/#download
http://www.pyinvoke.org/
http://man7.org/linux/man-pages/man1/make.1.html

Facelift Documentation, Release 0.2.1

(continued from previous page)

no targets are out of date.
build succeeded.

The HTML pages are in build/html.

All of these tasks should just work right out of the box, but something might break eventually after required tooling
gets enough major updates.

3.2 Opening Issues

Issues should follow the included ISSUE_TEMPLATE found in .github/ISSUE_TEMPLATE.md.

• Issues should contain the following sections:

– Expected Behavior

– Current Behavior

– Possible Solution

– Steps to Reproduce (for bugs)

– Context

– Your Environment

These sections help the developers greatly by providing a large understanding of the context of the bug or requested
feature without having to launch a full fleged discussion inside of the issue.

3.3 Creating Pull Requests

Pull requests should follow the included PULL_REQUEST_TEMPLATE found in .github/
PULL_REQUEST_TEMPLATE.md.

• Pull requests should always be from a topic / feature / bugfix (left side) branch.
Pull requests from master branches will not be merged.

• Pull requests should not fail our requested style guidelines or linting checks.

32 Chapter 3. Contributing

CHAPTER

FOUR

CODE OF CONDUCT

4.1 Our Pledge

We as members, contributors, and leaders pledge to make participation in our community a harassment-free experience
for everyone, regardless of age, body size, visible or invisible disability, ethnicity, sex characteristics, gender identity
and expression, level of experience, education, socio-economic status, nationality, personal appearance, race, religion,
or sexual identity and orientation.

We pledge to act and interact in ways that contribute to an open, welcoming, diverse, inclusive, and healthy community.

4.2 Our Standards

Examples of behavior that contributes to a positive environment for our community include:

• Demonstrating empathy and kindness toward other people

• Being respectful of differing opinions, viewpoints, and experiences

• Giving and gracefully accepting constructive feedback

• Accepting responsibility and apologizing to those affected by our mistakes, and learning from the experience

• Focusing on what is best not just for us as individuals, but for the overall community

Examples of unacceptable behavior include:

• The use of sexualized language or imagery, and sexual attention or advances of any kind

• Trolling, insulting or derogatory comments, and personal or political attacks

• Public or private harassment

• Publishing others’ private information, such as a physical or email address, without their explicit permission

• Other conduct which could reasonably be considered inappropriate in a professional setting

33

Facelift Documentation, Release 0.2.1

4.3 Enforcement Responsibilities

Community leaders are responsible for clarifying and enforcing our standards of acceptable behavior and will take
appropriate and fair corrective action in response to any behavior that they deem inappropriate, threatening, offensive,
or harmful.

Community leaders have the right and responsibility to remove, edit, or reject comments, commits, code, wiki ed-
its, issues, and other contributions that are not aligned to this Code of Conduct, and will communicate reasons for
moderation decisions when appropriate.

4.4 Scope

This Code of Conduct applies within all community spaces, and also applies when an individual is officially repre-
senting the community in public spaces. Examples of representing our community include using an official e-mail
address, posting via an official social media account, or acting as an appointed representative at an online or offline
event.

4.5 Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported to the community leaders respon-
sible for enforcement at stephen@bunn.io. All complaints will be reviewed and investigated promptly and fairly.

All community leaders are obligated to respect the privacy and security of the reporter of any incident.

4.6 Enforcement Guidelines

Community leaders will follow these Community Impact Guidelines in determining the consequences for any action
they deem in violation of this Code of Conduct:

4.6.1 1. Correction

Community Impact: Use of inappropriate language or other behavior deemed unprofessional or unwelcome in the
community.

Consequence: A private, written warning from community leaders, providing clarity around the nature of the violation
and an explanation of why the behavior was inappropriate. A public apology may be requested.

4.6.2 2. Warning

Community Impact: A violation through a single incident or series of actions.

Consequence: A warning with consequences for continued behavior. No interaction with the people involved, includ-
ing unsolicited interaction with those enforcing the Code of Conduct, for a specified period of time. This includes
avoiding interactions in community spaces as well as external channels like social media. Violating these terms may
lead to a temporary or permanent ban.

34 Chapter 4. Code of Conduct

mailto:stephen@bunn.io

Facelift Documentation, Release 0.2.1

4.6.3 3. Temporary Ban

Community Impact: A serious violation of community standards, including sustained inappropriate behavior.

Consequence: A temporary ban from any sort of interaction or public communication with the community for a
specified period of time. No public or private interaction with the people involved, including unsolicited interaction
with those enforcing the Code of Conduct, is allowed during this period. Violating these terms may lead to a permanent
ban.

4.6.4 4. Permanent Ban

Community Impact: Demonstrating a pattern of violation of community standards, including sustained inappropriate
behavior, harassment of an individual, or aggression toward or disparagement of classes of individuals.

Consequence: A permanent ban from any sort of public interaction within the community.

4.7 Attribution

This Code of Conduct is adapted from the Contributor Covenant, version 2.0, available at https://www.
contributor-covenant.org/version/2/0/code_of_conduct.html.

Community Impact Guidelines were inspired by Mozilla’s code of conduct enforcement ladder.

For answers to common questions about this code of conduct, see the FAQ at https://www.contributor-covenant.org/
faq. Translations are available at https://www.contributor-covenant.org/translations.

4.7. Attribution 35

https://www.contributor-covenant.org/version/2/0/code_of_conduct.html
https://www.contributor-covenant.org/version/2/0/code_of_conduct.html
https://github.com/mozilla/diversity
https://www.contributor-covenant.org/faq
https://www.contributor-covenant.org/faq
https://www.contributor-covenant.org/translations

Facelift Documentation, Release 0.2.1

36 Chapter 4. Code of Conduct

CHAPTER

FIVE

CHANGELOG

All notable changes to this project will be documented in this file.
The format is based on Keep a Changelog and this project adheres to Semantic Versioning.

5.1 0.2.1 (2020-10-30)

5.1.1 Bug Fixes

• Fixing the release task and some inconsistencies that were causing the download_data() function to raise
a ValueError.

5.2 0.2.0 (2020-10-30)

5.2.1 Miscellaneous

• Due to PyPi’s upload limit of ~100MB, we cannot bundle pre-trained models along with the built package. We
are now building a process for acquiring these models around an included function that will attempt to fetch the
latest released models from GitHub releases.

The method download_data() should be a quick initial setup task when attempting to use this module. This
task will download the necessary data to use the included detectors and encoders.

More details about what is necessary for this release process is and should (in the future) be documented in the
facelift._data module.

5.3 0.1.0 (2020-10-27)

5.3.1 Miscellaneous

• The initial release doesn’t have a super detailed list of introduced features or bugfixes as this project was pulled
together from other side projects I’ve had in the past. Below I’ll list the important features that we are starting
out with. Future additions should result in a history of news fragments that get aggregated into this changelog.

Starting features:

1. Face feature detection with a few bundled models.

37

http://keepachangelog.com/en/1.0.0/
http://semver.org/spec/v2.0.0.html
https://docs.python.org/3.7/library/exceptions.html#ValueError

Facelift Documentation, Release 0.2.1

– Basic face feature detection (eyes and nose)

– Partial face feature detection (trained model produced by dlib)

– Full face feature detection (third party trained model)

2. Face recognition with a bundled ResNet produced by dlib to produce face encoding.

– Includes basic Euclidean distance scoring to find similar faces.

3. Wrappers for OpenCV frame capturing.

– Generators for frames from written media files.

– Generators for frames from streaming devices (webcams).

4. Wrappers for OpenCV windows.

– Context managers for named window management.

5. Wrappers for OpenCV common frame transformations

– Scaling, resizing, rotating, cutting, copying, etc. . .

6. Wrappers for OpenCV canvas drawing features

– Helper functions for drawing points, lines, polygons, text, etc. . .

7. Example helpers module for basic face normalization.

– Gives a basic re-implementation of dlib’s get_face_chip() method.

38 Chapter 5. Changelog

CHAPTER

SIX

LICENSE

ISC License

Copyright (c) 2020, Stephen Bunn <stephen@bunn.io>

Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

39

Facelift Documentation, Release 0.2.1

40 Chapter 6. License

CHAPTER

SEVEN

ATTRIBUTION

A lot of the logic that makes up this package is pulled from other projects or is using resources that other developers
have produced. Below are callouts to the projects or resources that were used to create this package.

Facelift Icon
— Created by Delwar Hossain pulled from Noun Project

81 Point Face Feature Model
— Created by codeniko pulled from codeniko/shape_predictor_81_face_landmarks
This model is used as part of the FullFaceDetector to allow for detecting the FOREHEAD feature. Thanks to
codeniko for traning this model.

Image Transformation Utilities
— Created by josebr1 pulled from josebr1/imutils
A load of utilities and image transformations were inspired by and sometimes directly pulled the work done in this
project. Thanks to all the contributors who threw these together. It made refactoring them to fit for my own design
and use-case much easier.

Facial Recognition
— Created by ageitgey pulled from ageitgey/face_recognition
A fair chunk of the logic used for facial recognition was inspired from the work done in this project. Thanks to all the
contributors who worked on building this iteration of a facial recognition package.

41

https://thenounproject.com/
https://github.com/codeniko/shape_predictor_81_face_landmarks
https://github.com/jrosebr1/imutils
https://github.com/ageitgey/face_recognition

Facelift Documentation, Release 0.2.1

42 Chapter 7. Attribution

CHAPTER

EIGHT

PROJECT REFERENCE

8.1 Facelift Package

8.1.1 facelift.types

Contains module-wide used types.

facelift.types.Frame
An aliased type for a basic numpy array that gets given to use via OpenCV.

Type NDArray[(Any, Any, 3), UInt8]

facelift.types.Point
A single x, y coordinate that describes a single positional point.

Type NDArray[(2,), Int32]

facelift.types.PointSequence
A sequence of points that is typically used to describe a face feature or a line during rendering.

Type NDArray[(Any, 2), Int32]

facelift.types.Encoding
A 128 dimension encoding of a detected face for a given frame.

Type NDArray[(128,), Int32]

facelift.types.Detector
Callable that takes a frame and an upsample count and discovers the bounds of a face within the frame.

Type Callable[[Frame, int], PointSequence]

facelift.types.Predictor
Callable which takes a frame and detected face bounds to discover the shape and features within the face.

Type Callable[[Frame, dlib.rectangle], dlib.full_object_detection]

class facelift.types.Encoder(*args, **kwds)
Protocol class for dlib.face_recognition_model_v1..

compute_face_descriptor(frame, face, num_jitters=0, padding=0.25)
Compute a descriptor for a detected face frame.

Parameters

• frame (Frame) – The frame containing just the detected face.

• face (dlib.full_object_detection) – The raw detected face bounds within the
given face frame.

43

https://docs.python.org/3.7/library/functions.html#int
http://dlib.net/python/index.html#dlib.rectangle
http://dlib.net/python/index.html#dlib.full_object_detection

Facelift Documentation, Release 0.2.1

• num_jitters (int) – The number of jitters to run through the dector projection. De-
faults to 0.

• padding (float) – The default padding around the face. Defaults to 0.25.

Returns The face descriptor (encoding).

Return type dlib.vector

class facelift.types.Face(raw, landmarks, frame)
Describes a detected face.

Parameters

• raw (dlib.full_object_detection) – The raw dlib object detection container.

• landmarks (Dict[FaceFeature, PointSequence]) – Mapping of extracted face fea-
tures to the sequence of points describing those features.

• frame (Frame) – The base non-normalized cropped frame of just the face.

property rectangle
Point sequence representation of the detected face’s bounds.

This property is useful for properly positioning text around the detected face as the draw_text() needs
a text container to be defined.

Returns A sequence of 2 points indicating the top-left and bottom-right corners of the detected
face’s bounds.

Return type PointSequence

class facelift.types.FaceFeature(value)
Enumeration of features of a face that we can detect.

NOSE
The nose of a face.

JAW
The jaw line of a face.

MOUTH
The external bounds of the mouth of a face.

INNER_MOUTH
The internal bounds of the mouth of a face.

RIGHT_EYE
The external and internal bounds of the right eye of a face.

LEFT_EYE
The external and internal bounds of the left eye of a face.

RIGHT_EYEBROW
The right eyebrow of a face.

LEFT_EYEBROW
The left eyebrow of a face.

FOREHEAD
The forehead curvature of a face.

class facelift.types.MediaType(value)
Enumeration of acceptable media types for processing.

44 Chapter 8. Project Reference

https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/functions.html#float

Facelift Documentation, Release 0.2.1

IMAGE
Defines media that contains just a single frame to process.

VIDEO
Defines media that contains a known number of frames to process.

STREAM
Defines media that contains an unknown number of frames to process.

8.1.2 facelift.capture

Contains helpers and managers for capturing content from various sources.

Among the included functions, iter_media_frames() and iter_stream_frames() should really be all
you ever care about. With these two functions you can iterate over either some image or video (as supported by
OpenCV) or frames streamed directly from a webcam. The frames output by these generators are numpy arrays that
are considered Frame instances and are used throughout the project.

For example, if I had a video file ~/my-file.mp4 and wanted to iterate over all available frames within the video,
I would do use iter_media_frames() like the following:

from pathlib import Path
from facelift.capture import iter_media_frames

MY_FILE = Path("~/my-file.mp4").expanduser()
for frame in iter_media_frames(MY_FILE):

print(frame)

The same works for images, however only 1 frame will ever be yielded from the generator.

If you want to instead iterate over the frames from a webcam, you should use the iter_stream_frames() like
the following:

from facelift.capture import iter_stream_frames
will default the device id to a value of 0
this means OpenCV will attempt to discover the first available webcam
for frame in iter_stream_frames():

print(frame)

if you have 2 webcams enabled and want to instead use the 2nd one, you should
specify a device index of 1 like this
for frame in iter_stream_frames(1):

print(frame)

facelift.capture.file_capture(filepath)
Context manager to open a given filepath for frame capture.

This is just a simple context manager wrapper around the base media_capture() manager to ensure that a
given filepath exists and is a supported media type before attempting to build a capture around it.

8.1. Facelift Package 45

Facelift Documentation, Release 0.2.1

Examples

>>> from pathlib import Path
>>> from facelift.capture import file_capture
>>> MY_FILEPATH = Path("~/my-file.mp4").expanduser()
>>> with file_capture(MY_FILEPATH) as capture:
... print(capture)
<VideoCapture 0x1234567890>

Parameters filepath (Path) – The filepath to open for capture

Raises

• FileNotFoundError – When the given filepath doesn’t exist

• ValueError – When the given filepath is not a supported media type

Yields cv2.VideoCapture – A capturer that allows for reading frames from the given media filepath

Return type Generator[VideoCapture, None, None]

facelift.capture.iter_media_frames(media_filepath, loop=False)
Iterate over frames from a given supported media file.

Examples

>>> from pathlib import Path
>>> from facelift.capture import iter_media_frames
>>> MEDIA_PATH = Path("~/my-media.mp4").expanduser()
>>> for frame in iter_media_frames(MEDIA_PATH):
... # do something with the frame

Parameters

• media_filepath (Path) – The filepath to the media to read frames from.

• loop (bool) – Flag that indicates if capture should reset to starting frame once all frames
have been read. Defaults to False

Yields Frame – A frame read from the given media file

Return type Generator[Type[ndarray], None, None]

facelift.capture.iter_stream_frames(stream_type=None)
Iterate over frames from a given streaming device.

By default this iterator will attempt to connect to the first available webcam and yield the webcam’s streamed
frames. You can specify the appropriate device index 0-99 (0 being the default), or a custom stream type defined
by the OpenCV video IO enum.

46 Chapter 8. Project Reference

https://docs.python.org/3.7/library/pathlib.html#pathlib.Path
https://docs.python.org/3.7/library/exceptions.html#FileNotFoundError
https://docs.python.org/3.7/library/exceptions.html#ValueError
https://docs.python.org/3.7/library/typing.html#typing.Generator
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/pathlib.html#pathlib.Path
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/typing.html#typing.Generator
https://docs.python.org/3.7/library/typing.html#typing.Type
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None
https://bit.ly/3cctIN8

Facelift Documentation, Release 0.2.1

Examples

>>> from facelift.capture import iter_stream_frames
>>> # iterate over frames available from the second available webcam
>>> for frame in iter_stream_frames(1):
... # do something with the frame

Parameters stream_type (Optional[int], optional) – The stream type to attempt to
open.

Yields Frame – A read frame from the given streaming device

Return type Generator[Type[ndarray], None, None]

facelift.capture.media_capture(media, media_type)
General purpose media capture context manager.

This context manager is basically just a wrapper around the provided VideoCapture constructor along with
some capturing destruction logic. The provided media can either be a filepath to capture frames off of or a
device id as defined by the OpenCV video IO enum.

In most all cases where you just want to build a capture off of your default webcam, you should just be giving a
media of 0.

Examples

>>> # build a media capture for a specific media file
>>> from facelift.capture import media_capture
>>> with media_capture("/home/a-user/Desktop/test.mp4") as capture:
... print(capture)
<VideoCapture 0x1234567890>

>>> # build a media capture around the first available webcam
>>> from facelift.capture import media_capture
>>> with media_capture(0) as capture:
... print(capture)
<VideoCapture 0x1234567890>

Parameters

• media (Union[str, int]) – The media to build a capturer for

• media_type (MediaType) –

Raises ValueError – On failure to open the given media for capture

Yields cv2.VideoCapture – A capturer that allows for reading sequential frames

Return type Generator[VideoCapture, None, None]

facelift.capture.stream_capture(stream_type=None)
Context manager to open a stream for frame capture.

By default this context manager will just attempt to connect to open capturing on any available webcams or
connected cameras. You can get more specific about what device you would like to open a capturer on by
supplying a different stream type. These stream types come directly from the OpenCV video IO enum.

8.1. Facelift Package 47

https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/typing.html#typing.Generator
https://docs.python.org/3.7/library/typing.html#typing.Type
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None
https://bit.ly/3cctIN8
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/exceptions.html#ValueError
https://docs.python.org/3.7/library/typing.html#typing.Generator
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None
https://bit.ly/3cctIN8

Facelift Documentation, Release 0.2.1

Examples

>>> # build a frame capture from the first available webcam
>>> from facelift.capture import stream_capture
>>> with stream_capture() as capture:
... print(capture)
<VideoCapture 0x1234567890>

>>> # build a frame capture from the second available webcam
>>> from facelift.capture import stream_capture
>>> with stream_capture(1) as capture:
... print(capture)
<VideoCapture 0x1234567890>

Parameters stream_type (Optional[int], optional) – The stream type to open

Raises ValueError – When the given stream device fails to be opened for capture

Yields cv2.VideoCapture – A capturer that allows for reading frames from the defined stream type

Return type Generator[VideoCapture, None, None]

8.1.3 facelift.transform

Contains some common necessary frame transformation helper methods.

These transformation methods are useful for optimizing face detection in frames. Typically face detection takes much
longer the more pixels there are to consider. Therefore, using scale() or resize() will help you speed up
detection.

These helper transforms can be composed together to produce apply multiple operations on a single frame. For
example, if we wanted to first downscale by half and then rotate a frame by 90 degrees, we could do something like
the following:

from facelift.transform import rotate, scale
transformed_frame = rotate(scale(frame, 0.5), 90)

facelift.transform.DEFAULT_INTERPOLATION
The default type of interpolation to use in transforms that require an interpolation method. Defaults to cv2.
INTER_AREA.

Type int

facelift.transform.adjust(frame, brightness=None, sharpness=None)
Adjust the brightness or sharpness of a frame.

48 Chapter 8. Project Reference

https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/exceptions.html#ValueError
https://docs.python.org/3.7/library/typing.html#typing.Generator
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/functions.html#int

Facelift Documentation, Release 0.2.1

Examples

>>> from facelift.transform import adjust
>>> sharper_frame = adjust(frame, sharpness=1.4)
>>> brighter_frame = adjust(frame, brightness=10)
>>> sharper_and_brighter_frame = adjust(frame, sharpness=1.4, brightness=10)

Parameters

• frame (Frame) – The frame to adjust

• brightness (Optional[int], optional) – The new brightness of the frame (can
be negative, default is 0). Defaults to 0.

• sharpness (Optional[float], optional) – The new sharpness of the frame (0.0
is black, default is 1.0). Defaults to 1.0.

Returns The newly adjusted frame

Return type Frame

facelift.transform.copy(frame)
Copy the given frame to a new location in memory.

Examples

>>> from facelift.transform import copy
>>> copied_frame = copy(frame)
>>> assert frame == copied_frame
>>> assert frame is not copied_frame

Parameters frame (Frame) – The frame to copy

Returns An exact copy of the given frame

Return type Frame

facelift.transform.crop(frame, start, end)
Crop the given frame between two top-left to bottom-right points.

Examples

Crop a frame from the first pixel to the center pixel.

>>> from facelift.transform import crop
>>> assert frame.shape[:1] == [512, 512]
>>> cropped_frame = crop(frame, (0, 0), (256, 256))
>>> assert cropped_frame.shape[:1] == [256, 256]

Parameters

• frame (Frame) – The frame to crop

• start (Tuple[int, int]) – The top-left point to start the crop at

• end (Tuple[int, int]) – The bottom-right point to end the crop at

8.1. Facelift Package 49

https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/functions.html#int

Facelift Documentation, Release 0.2.1

Raises ValueError – When the given starting crop point appears after the given ending crop point

Returns The newly cropped frame

Return type Frame

facelift.transform.flip(frame, x_axis=False, y_axis=False)
Flip the given frame over either or both the x and y axis.

Examples

>>> from facelift.transform import flip
>>> vertically_flipped_frame = flip(frame, x_axis=True)
>>> horizontally_flipped_frame = flip(frame, y_axis=True)
>>> inverted_frame = flip(frame, x_axis=True, y_axis=True)

Parameters

• frame (Frame) – The frame to flip

• x_axis (bool, optional) – Flag indicating the frame should be flipped vertically.
Defaults to False.

• y_axis (bool, optional) – Flag indicating the frame should be flipped horizontally.
Defaults to False.

Returns The newly flipped frame

Return type Frame

facelift.transform.grayscale(frame)
Convert the given frame to grayscale.

This helper is useful sometimes for classification as color doesn’t matter as much during face encoding.

Examples

>>> from facelift.transform import grayscale
>>> grayscale_frame = grayscale(bgr_frame)

Parameters frame (Frame) – The BGR frame to convert to grayscale

Returns The newly grayscaled frame

Return type Frame

facelift.transform.resize(frame, width=None, height=None, lock_aspect=True, interpola-
tion=cv2.INTER_AREA)

Resize a given frame to a given width and/or height.

• If both width and height are given, the frame will be resized accordingly.

• If only one of width or height is given, the frame will be resized according to the provided dimension
(either width or height).

– As long as lock_aspect is truthy, the unprovided dimension will be adjusted to maintain the
original aspect-ratio of the frame.

50 Chapter 8. Project Reference

https://docs.python.org/3.7/library/exceptions.html#ValueError
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/functions.html#bool

Facelift Documentation, Release 0.2.1

– If lock_aspect is falsy, the resize operation will only scale the provided dimension while keeping
the original size of the unprovided dimension.

Examples

Resize a frame’s width while keeping the height relative:

>>> from facelift.transform import resize
>>> assert frame.shape[:1] == [512, 512]
>>> resized_frame = resize(frame, width=256, lock_aspect=True)
>>> assert resized_frame.shape[:1] == [256, 256]

Resize a frame’s width while keeping the original height:

>>> from facelift.transform import resize
>>> assert frame.shape[:1] == [512, 512]
>>> resized_frame = resize(frame, width=256, lock_aspect=False)
>>> assert resized_frame.shape[:1] == [512, 256]

Resize both a frame’s width and height:

>>> from facelift.transform import resize
>>> assert frame.shape[:1] == [512, 512]
>>> resized_frame = resize(frame, width=256, height=128)
>>> assert resized_frame.shape[:1] == [128, 256]

Parameters

• frame (Frame) – The frame to resize

• width (Optional[int], optional) – The exact width to resize the frame to.

• height (Optional[int], optional) – The exact height to resize the frame to.

• lock_aspect (bool, optional) – Whether to keep the width and height relative
when only given one value. Defaults to True.

• interpolation (int, optional) – The type of interpolation to use in the resize
operation. Defaults to DEFAULT_INTERPOLATION .

Returns The newly resized frame

Return type Frame

facelift.transform.rgb(frame)
Convert the given frame to RGB.

This helper transform is typically needed when working with other image processing libraries such as pillow as
they work in RGB coordinates while OpenCV works in BGR coordinates.

8.1. Facelift Package 51

https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/functions.html#int
https://pillow.readthedocs.io/en/stable/

Facelift Documentation, Release 0.2.1

Examples

>>> from facelift.transform import rgb
>>> rgb_frame = rgb(bgr_frame)

Parameters frame (Frame) – The BGR frame to convert to RGB

Returns The new RGB frame

Return type Frame

facelift.transform.rotate(frame, degrees, interpolation=cv2.INTER_AREA)
Rotate a frame while keeping the whole frame visible.

Examples

>>> from facelift.transform import rotate
>>> rotated_90 = rotate(frame, 90)
>>> rotated_neg_90 = rotate(frame, -90)

Warning: This transform typically will produce larger frames since we are producing a rotated frame while
keeping the original frame completely visible. This means if we do a perfect 45 degree rotation on a 512x512
frame we will produce a 724x724 frame since the 512x512 frame is now on a angle that requires a larger
container.

Be cautious when using rotation. Most of the time you do not need to rotate on any angles other than 90,
180, and 270 for decent face detection. However, this isn’t always true.

Parameters

• frame (Frame) – The frame to rotate

• degrees (int) – The number of degrees to rotate the given frame

• interpolation (int, optional) – The type of interpolation to use in the produced
rotation matrix. Defaults to DEFAULT_INTERPOLATION .

Returns The newly rotated frame

Return type Frame

facelift.transform.scale(frame, factor, interpolation=cv2.INTER_AREA)
Scale a given frame down or up depending on the given scale factor.

Examples

Downscaling a frame can be performed with a scale factor >0 and <1. For example, scaling a frame to half of
its original size would require a scale factor of 0.5.

>>> from facelift.transform import scale
>>> assert frame.shape[:1] == [512, 512]
>>> downscaled_frame = scale(frame, 0.5)
>>> assert downscaled_frame.shape[:1] == [256, 256]

52 Chapter 8. Project Reference

https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/functions.html#int

Facelift Documentation, Release 0.2.1

Upscaling a frame with this method is very naive and suboptimal. However, any value >1 will result in a
upscaled frame. For example, scaling a frame to double its original size would require a scale factor of 2.

>>> from facelift.transform import scale
>>> assert frame.shape[:1] == [512, 512]
>>> upscaled_frame = scale(frame, 2)
>>> assert upscaled_frame.shape[:1] == [1024, 1024]

Following this logic, a scale factor of 1 would result in absolutely no change to the given frame.

Warning: This transformation will return the exact same frame instance as the one provided through the
frame parameter in the following cases:

1. If a factor of exactly 1 is given. In this case the scale operation would result in no change.

2. The given frame has factor less than 1 a width or height of 1px. In this case we are attempting to scale
down the given frame and we cannot scale down the frame any further without producing a 0px frame.

Parameters

• frame (Frame) – The frame to scale

• factor (float) – The factor to scale the given frame

• interpolation (Optional[int], optional) – The type of interpolation to use
in the scale operation. Defaults to DEFAULT_INTERPOLATION .

Raises ValueError – When the given scale factor is not positive

Returns The newly scaled frame

Return type Frame

facelift.transform.translate(frame, delta_x=None, delta_y=None, interpola-
tion=cv2.INTER_AREA)

Translate the given frame a specific distance away from its origin.

Examples

>>> from facelift.transform import translate
>>> translated_neg_90_x_frame = translate(frame, delta_x=-90)

Important: This translation retains the original size of the given frame. So a 512x512 frame translated 90px
on the x-axis will still be 512x512 and space where the frame use to take up will be essentially nulled out.

Parameters

• frame (Frame) – The frame to translate

• delta_x (Optional[int], optional) – The pixel distance to translate the frame
on the x-axis.

• delta_y (Optional[int], optional) – The pixel distance to translate the frame
on the y-axis.

8.1. Facelift Package 53

https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/exceptions.html#ValueError
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/functions.html#int

Facelift Documentation, Release 0.2.1

• interpolation (int, optional) – The type of interpolation to use during the trans-
lation. Defaults to DEFAULT_INTERPOLATION .

Returns The newly translated frame

Return type Frame

8.1.4 facelift.magic

Contains helpers and enums used to guess the type of media that is being processed.

This module utilizes python-magic which in turn uses libmagic to guess the appropriate mimetype of some byte buffer.

facelift.magic.DEFAULT_MAGIC_BUFFER_SIZE
The default number of bytes to try and read from when making a guess at the mimetype of some file.

Type int

facelift.magic.get_media_type(media_filepath, buffer_size=None, validate=False)
Try and determine the media type for content at the given filepath.

Parameters

• media_filepath (Path) – The filepath to guess the media type of

• buffer_size (Optional[int], optional) – The number of bytes to use
for guessing the media type of the given file. Defaults to the value of
DEFAULT_MAGIC_BUFFER_SIZE.

• validate (bool, optional) – If truthy, a ValueError will be raised if the given
file’s mimetype does not match a supported MediaType. Defaults to False.

Raises

• FileNotFoundError – When the provided filepath does not exist

• ValueError – When validate is truthy and the given filepath does not match a sup-
ported MediaType

Returns The appropriate media type enum attribute for the given filepath, if a successful guess and
media type match is made

Return type Optional[MediaType]

facelift.magic.get_mimetype(media_filepath, buffer_size=None)
Try and determine the mimetype for content at the given filepath.

Parameters

• media_filepath (Path) – The filepath to guess the mimetype of

• buffer_size (Optional[int], optional) – The number of bytes to
use for guessing the mimetype of the given file. Defaults to the value of
DEFAULT_MAGIC_BUFFER_SIZE.

Raises FileNotFoundError – When the provided filepath does not exist

Returns The guessed mimetype if a guess can be safely made

Return type Optional[str]

54 Chapter 8. Project Reference

https://docs.python.org/3.7/library/functions.html#int
https://github.com/ahupp/python-magic
https://linux.die.net/man/3/libmagic
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/pathlib.html#pathlib.Path
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/exceptions.html#ValueError
https://docs.python.org/3.7/library/exceptions.html#FileNotFoundError
https://docs.python.org/3.7/library/exceptions.html#ValueError
https://docs.python.org/3.7/library/pathlib.html#pathlib.Path
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/exceptions.html#FileNotFoundError
https://docs.python.org/3.7/library/stdtypes.html#str

Facelift Documentation, Release 0.2.1

8.1.5 facelift.detect

Contains the available bulitin face detectors.

The included detectors will handle the necessary process for taking a read frame and discovering all the avail-
able faces and included landmarks. If you have a custom face_landmarks model, you can inherit from
BaseLandmarkDetector to detect and return faces using a custom model.

Examples

>>> from facelift.detect import BasicFaceDetector
>>> from facelift.capture import iter_media_frames
>>> detector = BasicFaceDetector()
>>> for frame in iter_media_frames(MEDIA_FILEPATH):
... for face in detector.iter_faces(frame):
... print(face)

class facelift.detect.BaseLandmarkDetector
An abstract landmark detector class that each landmark model should inherit from.

Raises

• NotImplementedError – If the model_filepath property is not implemented

• NotImplementedError – If the landmark_slices property is not implemented

detector
Detector to use in face bounds detection.

Returns The detector callable.

Return type Detector

get_landmarks(points)
Get the mapping of face features and point sequences for extracted points.

Parameters points (PointSequence) – The sequence of extracted points from dlib.

Returns The dictionary of face features and point sequences.

Return type Dict[FaceFeature, PointSequence]

iter_faces(frame, upsample=0)
Iterate over detected faces within a given Frame.

Examples

Get detected faces from the first available webcam.

>>> from facelift.capture import iter_stream_frames
>>> from facelift.detect import BasicFaceDetector
>>> detector = BasicFaceDetector()
>>> for frame in iter_stream_frames():
... for face in detector.iter_faces(frame):
... print(face)

Parameters

• frame (Frame) – The frame to detect faces in.

8.1. Facelift Package 55

https://docs.python.org/3.7/library/exceptions.html#NotImplementedError
https://docs.python.org/3.7/library/exceptions.html#NotImplementedError

Facelift Documentation, Release 0.2.1

• upsample (int, optional) – The number of times to scale up the image before
detecting faces. Defaults to 0.

Yields Face – A detected face within the image, this has no guarantee of order if multiple faces
are detected

Return type Generator[Face, None, None]

abstract property landmark_slices
Property mapping of facial features to face point slices.

Raises NotImplementedError – Must be implemented by subclasses

Return type Dict[FaceFeature, Tuple[int, int]]

abstract property model_filepath
Property filepath to the landmarks model that should be used for detection.

Raises NotImplementedError – Must be implemented by subclasses

Return type Path

predictor
Predictor to use in face landmark detection.

Returns The predictor callable.

Return type Predictor

static shape_to_points(shape, dtype='int')
Convert dlib shapes to point sequences.

Example

After getting a detected face shape from dlib, we need to convert it back into a numpy.ndarray so
OpenCV can use it.

>>> from facelift.detect import BasicFaceDetector
>>> detector = BasicFaceDetector()
>>> for face_bounds in detector.detector(frame, 0):
... face_shape = detector.predictor(frame, face_bounds)
... face_features = detector.shape_to_points(face_shape)

Parameters

• shape (dlib.full_object_detection) – The detected dlib shape.

• dtype (str, optional) – The point type to use when converting the given shape to
points. Defaults to “int”.

Returns The newly created sequence of points.

Return type PointSequence

static slices_to_landmarks(points, feature_slices)
Group point sequences to features based on point index slices.

Helper function to automatically group features when given the feature slice definition. This feature slice
definition is a basic way to easily categorize the features discovered from the dlib predictor as an actual
FaceFeature.

56 Chapter 8. Project Reference

https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/typing.html#typing.Generator
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/exceptions.html#NotImplementedError
https://docs.python.org/3.7/library/typing.html#typing.Dict
https://docs.python.org/3.7/library/typing.html#typing.Tuple
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/exceptions.html#NotImplementedError
https://docs.python.org/3.7/library/pathlib.html#pathlib.Path
http://dlib.net/python/index.html#dlib.full_object_detection
https://docs.python.org/3.7/library/stdtypes.html#str

Facelift Documentation, Release 0.2.1

Examples

>>> from facelift.detect import BasicFaceDetector
>>> detector = BasicFaceDetector()
>>> for face_bounds in detector.detector(frame, 0):
... face_shape = detector.predictor(frame, face_bounds)
... face_features = detector.shape_to_points(face_shape)
... grouped_features = detector.slices_to_landmarks(face_features)

Parameters

• points (PointSequence) – The points to extract feature sequences from.

• feature_slices (Dict[FaceFeature, Tuple[int, int]]) – A dictionary of
FaceFeature and slice tuples.

Returns The dictionary of features and grouped point sequences.

Return type Dict[FaceFeature, PointSequence]

class facelift.detect.BasicFaceDetector
Basic face detector.

This face detector gives single point positions for the outside of both eyes and the philtrum (right beneath the
nose). For rendering, these facial features must be rendered as points rather than lines.

This model is useful for just finding faces and getting normalized face frames. This model is not useful for
emotion, perspective, or face state detection.

class facelift.detect.FullFaceDetector
Full face detector.

This face detector detects all available frontal face features. This model can be used for most anything,
but may not be the most efficient. If you are just trying to detect faces, you should probably use the
BasicFaceDetector instead.

get_landmarks(points)
Get the mapping of face features and point sequences for extracted points.

Parameters points (PointSequence) – The sequence of extracted points from dlib.

Returns The dictionary of face features and point sequences.

Return type Dict[FaceFeature, PointSequence]

class facelift.detect.PartialFaceDetector
Partial face detector.

This face detector detects all features of a face except for the forehead. This model is useful for most any
purpose. However, if all you are doing is detecting faces, you should probably use the BasicFaceDetector
instead.

facelift.detect.get_detector()
Build the generic detector callable.

This detector comes directly from the dlib FHOG frontal face detector.

Returns The new callable to detect face bounds

Return type Detector

facelift.detect.get_predictor(model_filepath)
Build a predictor callable for a given landmark model.

8.1. Facelift Package 57

Facelift Documentation, Release 0.2.1

Parameters model_filepath (Path) – The path to the landmark model

Raises FileNotFoundError – If the given model filepath does not exist

Returns The new callable to predict face shapes

Return type Predictor

8.1.6 facelift.encode

Contains the available builtin face encoders.

The included encoders will handle the necessary steps to take a given frame and detected face to generate an encoding
that can be used for future recognition. I highly recommend that you use the BasicFaceDetector if attempting
to encode faces as it is lightweight and other detectors don’t provide any added benefit to face recognition.

Examples

>>> from facelift.capture import iter_media_frames
>>> from facelift.detect import BasicFaceDetector
>>> from facelift.encode import BasicFaceEncoder
>>> detector = BasicFaceDetector()
>>> encoder = BasicFaceEncoder()
>>> for frame in iter_media_frames(MEDIA_FILEPATH):
... for face in detector.iter_faces(frame):
... face_encoding = encoder.get_encoding(frame, face)

Important: Faces detected from the FullFaceDetector cannot be encoded as the model this detector uses is
trained by a third party and not able to be processed by dlib’s default ResNet model. Please only use faces detected
using the BasicFaceDetector or the PartialFaceDetector for building face encodings.

I would highly recommend that you use the BasicFaceDetector in all cases where you are performing encoding.
The trained detection model for this basic detector is ~5MB whereas the alternative is >90MB. Using a heavier model
will cause slowdown when simply trying to recognize multiple faces in a single frame.

facelift.encode.DEFAULT_ENCODING_JITTER
The default amount of jitter to apply to produced encodings.

Type int

facelift.encode.DEFAULT_ENCODING_PADDING
The default padding expected to exist around the detected face frame.

Type float

class facelift.encode.BaseEncoder
An abstract encoder class that each encoder should inherit from.

Raises NotImplementedError – If the model_filepath property is not implemented

get_encoding(frame, face, jitter=0, padding=0.25)
Calculate the encoding for a given frame and detected face.

58 Chapter 8. Project Reference

https://docs.python.org/3.7/library/pathlib.html#pathlib.Path
https://docs.python.org/3.7/library/exceptions.html#FileNotFoundError
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/exceptions.html#NotImplementedError

Facelift Documentation, Release 0.2.1

Examples

>>> from facelift.capture import iter_media_frames
>>> from facelift.detect import BasicFaceDetector
>>> from facelift.encode import BasicFaceEncoder
>>> detector = BasicFaceDetector()
>>> encoder = BasicFaceEncoder()
>>> for frame in iter_media_frames(MEDIA_FILEPATH):
... for face in detector.iter_faces(frame):
... face_encoding = encoder.get_encoding(frame, face)

Parameters

• frame (Frame) – The frame the face was detected in

• face (Face) – The detected face from the given frame

• jitter (int, optional) – The amount of jitter to apply during encoding. This can
help provide more accurate encodings for frames containing the same face. Defaults to
DEFAULT_ENCODING_JITTER.

• padding (float, optional) – The amount of padding to apply to the face frame
during encoding. Defaults to DEFAULT_ENCODING_PADDING.

Returns The encoding of the provided face for the given frame

Return type Encoding

abstract property model_filepath
Property filepath to the encoding model that should be used for encoding.

Raises NotImplementedError – Must be implemented by subclasses

Return type Path

score_encoding(source_encoding, known_encodings)
Score a source encoding against a list of known encodings.

Important: This score is the average Euclidian distance between the given encodings. So the most similar
encodings will result in a score closest to 0.0.

If no encodings are given, then we will default to using math.inf as it is the greatest distance from 0.0
that we can define.

Examples

>>> from facelift.capture import iter_media_frames
>>> from facelift.detect import BasicFaceDetector
>>> from facelift.encode import BasicFaceEncoder
>>> detector = BasicFaceDetector()
>>> encoder = BasicFaceEncoder()
>>> # A list of previously encoded faces for a single person
>>> KNOWN_FACES = [...]
>>> for frame in iter_media_frames(MEDIA_FILEPATH):
... for face in detector.iter_faces(frame):
... face_encoding = encoder.get_encoding(frame, face)
... score = encoder.score_encoding(face_encoding, KNOWN_FACES)

8.1. Facelift Package 59

https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/exceptions.html#NotImplementedError
https://docs.python.org/3.7/library/pathlib.html#pathlib.Path
https://docs.python.org/3.7/library/math.html#math.inf

Facelift Documentation, Release 0.2.1

Parameters

• source_encoding (Encoding) – The unknown encoding we are attempting to score.

• known_encodings (List[Encoding]) – A list of known encodings we are scoring
against. These encodings should all encodings from a single person’s face.

Returns The score of a given encoding against a list of known encodings. This value should be
greater than 0.0 (lower is better).

Return type float

class facelift.encode.BasicFaceEncoder
Encode faces detected by the BasicFaceDetector.

This face encoder can handle faces detected by both the BasicFaceDetector and the
PartialFaceDetector. However, you should likely only ever be encoding faces for recognition
from the lightest model available (BasicFaceDetector).

Important: This encoder can not handle faces detected using the FullFaceDetector. If we determine
we are using a face detected by this detector, the get_encoding() method will raise a ValueError.

get_encoding(frame, face, jitter=0, padding=0.25)
Calculate the encoding for a given frame and detected face.

Examples

>>> from facelift.capture import iter_media_frames
>>> from facelift.detect import BasicFaceDetector
>>> from facelift.encode import BasicFaceEncoder
>>> detector = BasicFaceDetector()
>>> encoder = BasicFaceEncoder()
>>> for frame in iter_media_frames(MEDIA_FILEPATH):
... for face in detector.iter_faces(frame):
... face_encoding = encoder.get_encoding(frame, face)

Parameters

• frame (Frame) – The frame the face was detected in

• face (Face) – The detected face from the given frame

• jitter (int, optional) – The amount of jitter to apply during encoding. This can
help provide more accurate encodings for frames containing the same face. Defaults to
DEFAULT_ENCODING_JITTER.

• padding (float, optional) – The amount of padding to apply to the face frame
during encoding. Defaults to DEFAULT_ENCODING_PADDING.

Raises ValueError – When the given face was detected with the FullFaceDetector.

Returns The encoding of the provided face for the given frame

Return type Encoding

facelift.encode.get_encoder(model_filepath)
Build an encoder for the given dlib ResNet model.

Parameters model_filepath (Path) – The path to the encoder model

60 Chapter 8. Project Reference

https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/exceptions.html#ValueError
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/exceptions.html#ValueError
https://docs.python.org/3.7/library/pathlib.html#pathlib.Path

Facelift Documentation, Release 0.2.1

Raises FileNotFoundError – If the given model filepath does not exist

Returns The encoder to use for encoding face frames

Return type Encoder

8.1.7 facelift.helpers

Contains mechanisms to extract details or normalized details for detected faces.

facelift.helpers.DEFAULT_NORMALIZED_FACE_SIZE
The default size of the normalized face frame. Defaults to 256.

Type int

facelift.helpers.DEFAULT_NORMALIZED_LEFT_EYE_POSITION
The default percentage (0.0-1.0) where the left eye should be placed in the normalized face frame. Defaults to
(0.35, 0.35).

Type Tuple[float, float]

facelift.helpers.get_eye_angle(face)
Get the angle the eyes are currently at for the given face.

Parameters face (Face) – The face to get the eye angle from.

Returns The floating point value describing the angle of the eyes in the face.

Return type numpy.float64

facelift.helpers.get_eye_center_position(face)
Get the center position between the eyes of the given face.

Parameters face (Face) – The face to extract the center position from.

Returns The position directly between the eyes of the face

Return type Tuple[numpy.int64, numpy.int64]

facelift.helpers.get_eye_deltas(face)
Get the difference between eye positions of the given face.

Parameters face (Face) – The face to get the eye deltas from.

Returns A tuple of (x delta, y delta) for the given face’s eyes

Return type Tuple[numpy.int64, numpy.int64]

facelift.helpers.get_eye_distance(face)
Get the distance between the eyes of the given face.

Parameters face (Face) – The face to get the eye distance from.

Returns A floating point value describing the distance between the face’s eye.

Return type numpy.float64

facelift.helpers.get_eye_positions(face)
Get the center position tuples of eyes from the given face.

Parameters face (Face) – The face to extract eye positions from.

Raises ValueError – If the given face is missing either left or right eye landmarks

8.1. Facelift Package 61

https://docs.python.org/3.7/library/exceptions.html#FileNotFoundError
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/exceptions.html#ValueError

Facelift Documentation, Release 0.2.1

Return type Tuple[Tuple[int64, int64], Tuple[int64, int64]]

Returns A tuple of (left eye position, right eye position)

facelift.helpers.get_normalized_frame(frame, face, desired_width=None,
desired_height=None, de-
sired_left_eye_position=None)

Get a normalized face frame where the face is aligned, cropped, and positioned.

Examples

Get a normalized face frame from a detected face from the given frame:

>>> from facelift.helpers import get_normalized_frame
>>> normalized_frame = get_normalized_frame(frame, face)

Parameters

• frame (Frame) – The original frame the face was detected from.

• face (Face) – The detected face to use when extracting a normalized face frame.

• desired_width (Optional[int], optional) – The desired width of the normal-
ized frame. Defaults to None.

• desired_height (Optional[int], optional) – The desired height of the nor-
malized frame. Defaults to None.

• desired_left_eye_position (Optional[Tuple[float, float]],
optional) – The desired position point for the left eye. This position is a value between
0.0 and 1.0 indicating the percentage of the frame. Defaults to None.

Returns The normalized face frame.

Return type Frame

8.1.8 facelift.render

Contains some very basic wrappers around drawing things onto frames.

When detecting faces, it is kinda nice to be able to see what features are being detected and where inaccuracies are
being detected. With a combination of the window module and some of these helper functions, we can easily visualize
what features are being detected.

For example, if we wanted to draw lines for each detected feature from the PartialFaceDetector we can do the
following:

>>> from facelift.capture import iter_stream_frames
>>> from facelift.window import opencv_window
>>> from facelift.detect import PartialFaceDetector
>>> from facelift.render import draw_line
>>> detector = PartialFaceDetector()
>>> with opencv_window() as window:
... for frame in iter_stream_frames():
... for face in detector.iter_faces(frame):
... for _, points in face.landmarks.items():

(continues on next page)

62 Chapter 8. Project Reference

https://docs.python.org/3.7/library/typing.html#typing.Tuple
https://docs.python.org/3.7/library/typing.html#typing.Tuple
https://docs.python.org/3.7/library/typing.html#typing.Tuple
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float

Facelift Documentation, Release 0.2.1

(continued from previous page)

... frame = draw_line(frame, points)

... window.render(frame)

facelift.render.DEFAULT_COLOR
The default color for all draw helper functions. Defaults to (255, 255, 255), or white.

Type Tuple[int, int, int]

facelift.render.DEFAULT_FONT
The default OpenCV HERSHEY font to use for rendering text. Defaults to cv2.FONT_HERSHEY_SIMPLEX

Type int

class facelift.render.LineType(value)
Enumeration of the different available PointSequence types for OpenCV.

FILLED
Filled line (useful for single points).

CONNECTED_4
A 4-point connected line.

CONNECTED_8
An 8-point connected line.

ANTI_ALIASED
An anti-aliased line (good for drawing curves).

class facelift.render.Position(value)
Enumeration of available relative positions.

START
Positioned content appears at the left of the container.

END
Positioned content appears at the right of the container.

CENTER
Positioned content appears in the middle of the container.

facelift.render.draw_contour(frame, line, color=255, 255, 255, thickness=- 1,
line_type=cv2.LINE_AA)

Form and draw a contour for the given line on a frame.

Examples

Draw a contour between multiple points.

>>> from facelift.render import draw_contour
>>> frame = draw_contour(frame, [(10, 10), (20, 20)])

Parameters

• frame (Frame) – The frame to draw the contour on.

• line (PointSequence) – The array of points to use to form the contour.

• color (Tuple[int, int, int], optional) – The color of the contour.. Defaults
to DEFAULT_COLOR.

• thickness (int, optional) – The thickness of the contour. Defaults to -1.

8.1. Facelift Package 63

https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/functions.html#int

Facelift Documentation, Release 0.2.1

• line_type (LineType, optional) – The line type to use for the contour. Defaults
to LineType.ANTI_ALIASED.

Return type Type[ndarray]

Returns Frame The frame with the contour drawn on it

facelift.render.draw_line(frame, line, sequence=None, color=255, 255, 255, thickness=1,
line_type=cv2.LINE_AA)

Draw a sequence of connected points on a given frame.

Examples

Draw a line between a sequence of points.

>>> from facelift.render import draw_line
>>> frame = draw_line(frame, [(10, 10), (20, 20)])

Parameters

• frame (Frame) – The frame to draw the line on.

• line (PointSequence) – The array of points to draw on the given frame

• sequence (Optional[List[Tuple[int, int]]], optional) – An optional
custom sequence for drawing the given line points. Defaults to None.

• color (Tuple[int, int, int], optional) – The color of the line. Defaults to
DEFAULT_COLOR.

• thickness (int, optional) – The thickness of the line. Defaults to 1.

• line_type (LineType, optional) – The type of the line. Defaults to Line-
Type.FILLED.

Return type Type[ndarray]

Returns Frame The frame with the line drawn on it

facelift.render.draw_point(frame, point, size=1, color=255, 255, 255, thickness=- 1,
line_type=cv2.FILLED)

Draw a single point on a given frame.

Examples

Draw a single point a position (10, 10) on a given frame.

>>> from facelift.render import draw_point
>>> frame = draw_point(frame, (10, 10))

Parameters

• frame (Frame) – The frame to draw the point

• point (Point) – The pixel coordinates to draw the point

• size (int, optional) – The size of the point. Defaults to 1.

• color (Tuple[int, int, int], optional) – The color of the point. Defaults to
DEFAULT_COLOR.

64 Chapter 8. Project Reference

https://docs.python.org/3.7/library/typing.html#typing.Type
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/typing.html#typing.Type
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/functions.html#int

Facelift Documentation, Release 0.2.1

• thickness (int, optional) – The thickness of the point. Defaults to -1.

• line_type (LineType, optional) – The type of line type to use for the point. De-
faults to LineType.FILLED.

Return type Type[ndarray]

Returns Frame The frame with the point drawn on it

facelift.render.draw_points(frame, points, size=1, color=255, 255, 255, thickness=- 1,
line_type=cv2.FILLED)

Draw multiple points on a given frame.

Examples

Draw a sequence of points to a given frame.

>>> from facelift.render import draw_points
>>> frame = draw_points(frame, [(10, 10), (20, 20)])

Parameters

• frame (Frame) – The frame to draw the points on.

• points (PointSequence) – The sequence of points to draw.

• size (int, optional) – The size of the points. Defaults to 1.

• color (Tuple[int, int, int], optional) – The color of the points. Defaults
to DEFAULT_COLOR.

• thickness (int, optional) – The thickness of the points. Defaults to -1.

• line_type (LineType, optional) – The type of line type to use for the points.
Defaults to LineType.FILLED.

Return type Type[ndarray]

Returns Frame The frame with the points drawn on it

facelift.render.draw_rectangle(frame, start, end, color=255, 255, 255, thickness=1,
line_type=cv2.LINE_AA)

Draw a rectangle on the given frame.

Examples

Draw a rectangle starting at (10, 10) and ending at (20, 20).

>>> from facelift.render import draw_rectangle
>>> frame = draw_rectangle(frame, (10, 10), (20, 20))

Parameters

• frame (Frame) – The frame to draw the rectangle on.

• start (Point) – The starting point of the rectangle.

• end (Point) – The ending point of the rectangle.

8.1. Facelift Package 65

https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/typing.html#typing.Type
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/typing.html#typing.Type
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

Facelift Documentation, Release 0.2.1

• color (Tuple[int, int, int], optional) – The color of the rectangle. De-
faults to DEFAULT_COLOR.

• thickness (int, optional) – The thickness of the rectangle. Defaults to 1.

• line_type (LineType, optional) – The line type to use when drawing the lines of
the rectangle. Defaults to LineType.ANTI_ALIASED.

Return type Type[ndarray]

Returns Frame The frame with the rectangle drawn on it

facelift.render.draw_text(frame, text, start, end, color=(255, 255, 255),
font=cv2.FONT_HERSHEY_SIMPLEX, font_scale=1, thickness=1,
line_type=cv2.LINE_AA, x_position=<Position.START: 'start'>,
y_position=<Position.START: 'start'>, x_offset=0, y_offset=0, al-
low_overflow=False)

Draw some text on the given frame.

Examples

Draw the text “Hello, World!” right-aligned within the text rectangle from (10, 10) to (20, 20).

>>> from facelift.render import draw_text, Position
>>> frame = draw_text(
... frame,
... "Hello, World",
... (10, 10),
... (20, 20),
... x_position=Position.END
...)

Parameters

• frame (Frame) – The frame to draw some text on

• text (str) – The text to draw on the frame

• start (Point) – The starting point of the text container

• end (Point) – The ending point of the text container

• color (Tuple[int, int, int], optional) – The color of the text. Defaults to
DEFAULT_COLOR.

• font (int, optional) – The OpenCV hershey font to draw the text with. Defaults to
DEFAULT_FONT.

• font_scale (float, optional) – The scale of the font. Defaults to 1.

• thickness (int, optional) – The thickness of the font. Defaults to 1.

• line_type (LineType, optional) – The line type of the font. Defaults to Line-
Type.ANTI_ALIASED.

• x_position (Position, optional) – The x-axis position to draw the text in relative
to the text container. Defaults to Position.START.

• y_position (Position, optional) – The y-axis position to draw the text in relative
to the text container. Defaults to Position.START.

66 Chapter 8. Project Reference

https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/typing.html#typing.Type
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#int

Facelift Documentation, Release 0.2.1

• x_offset (int, optional) – The x-axis offset from the text container to add to the
calculated relative position. Defaults to 0.

• y_offset (int, optional) – The y-axis offset from the text container to add to the
calculated relative position. Defaults to 0.

• allow_overflow (bool, optional) – If set to True, the provided text will start
drawing at the given start and end points without obeying them as a bounding text container.
Defaults to False.

Return type Type[ndarray]

Returns Frame The frame with the text drawn on it

8.1.9 facelift.window

Contains some helper abstractions for OpenCV windows and frame rendering.

This collection of window helpers is just to help standardize and cleanup how to interact with OpenCV window
displays. The opencv_window context manager is very easy to use for getting a quick window for rendering
frames as they are produced.

For example:

>>> from pathlib import Path
>>> from facelift.window import opencv_window
>>> from facelift.capture import iter_media_frames
>>> with opencv_window() as window:
... for frame in iter_media_frames(Path("~/my-file.mp4")):
... window.render(frame)

This context manager will produce a new window for rendering the frames read from my-file.mp4 and will destroy
the window once the context is exited.

I wouldn’t recommend using this for any kind of production use; mostly the OpenCV window is just useful for
debugging.

facelift.window.DEFAULT_WINDOW_TITLE
The default OpenCV window title if none is supplied. Defaults to “Facelift”.

Type str

facelift.window.DEFAULT_WINDOW_DELAY
The default number of milliseconds to wait between showing frames. Defaults to 1.

Type int

facelift.window.DEFAULT_WINDOW_STEP_KEY
The default ASCII key index to use as the step key when step is enabled. Defaults to 0x20 (Space).

Type int

class facelift.window.WindowStyle
Object namespace of available OpenCV window styles.

DEFAULT
The default OpenCV window style.

Type int

8.1. Facelift Package 67

https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/typing.html#typing.Type
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/functions.html#int

Facelift Documentation, Release 0.2.1

AUTOSIZE
Automatically fit window size on creation.

Type int

GUI_NORMAL
Window with a basic GUI experience.

Type int

GUI_EXPANDED
Window with an expanded GUI experience.

Type int

FULLSCREEN
Window that displays frames fullscreen (full-canvas).

Type int

FREE_RATIO
Window that allows for any window ratio.

Type int

KEEP_RATIO
Window that maintains the original window ratio.

Type int

OPENGL
Window rendered via OpenGL. May not work for some machines and will only work if OpenCV is com-
piled with GPU support.

Type int

class facelift.window.opencv_window(title='Facelift', style=cv2.WINDOW_NORMAL, de-
lay=1, step=False, step_key=32)

Create an OpenCV window that closes once the context exits.

Examples

Easy usage of OpenCV’s provided window to display read frames from a webcam.

>>> from facelift.window import opencv_window
>>> with opencv_window() as window:
... for frame in iter_stream_frames():
... window.render(frame)

Parameters

• title (str) – The title of the OpenCV window.

• style (int) – The style of the OpenCV window.

• delay (float) – The number of milliseconds to delay between displaying frames.

• step (bool) – Flag that indicates if the window should wait for a press of the defined
step_key before releasing the render call. Defaults to False.

• step_key (int) – The ASCII integer index of the key to wait for press when step is
True. Defaults to 0x20 (Space).

68 Chapter 8. Project Reference

https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/functions.html#int

Facelift Documentation, Release 0.2.1

Raises

• ValueError – If the given window title is an empty string

• ValueError – If the given window delay is less or equal to 0

__enter__()
Initialize the context of the window.

__exit__(exc_type, exc_value, traceback)
Destroy the context of the window.

Parameters

• exc_type (Optional[Type[BaseException]]) –

• exc_value (Optional[BaseException]) –

• traceback (Optional[traceback]) –

Return type Optional[bool]

close()
Destroy the window with the current context’s title.

create()
Create a new window with the current context’s title and style.

render(frame)
Render a given frame in the current window.

Parameters frame (Frame) – The frame to render within the window

8.1.10 facelift._data

Helpers for fetching the pre-trained models this project is built around.

Due to the size of the models that we are building this project around, we need to fetch the models outside of the
standard PyPi installation. The following methods handle building an asset manifest that should be released with each
GitHub release. This asset manifest will then further inform the little downloading script we have provided where to
find and place the assets in the installed package.

This helper utility currently expects the following of the GitHub release:

1. A data-manifest.json is provided as a GitHub release asset.

2. All models within the asset manifest are included as GitHub release assets.

Important: The data-manifest.json must following the following structure:

{
"relative filepath from package root for asset": [

"download url of asset",
"md5 hash of asset"

]
}

As an example:

8.1. Facelift Package 69

https://docs.python.org/3.7/library/exceptions.html#ValueError
https://docs.python.org/3.7/library/exceptions.html#ValueError
https://docs.python.org/3.7/library/typing.html#typing.Optional
https://docs.python.org/3.7/library/typing.html#typing.Type
https://docs.python.org/3.7/library/exceptions.html#BaseException
https://docs.python.org/3.7/library/typing.html#typing.Optional
https://docs.python.org/3.7/library/exceptions.html#BaseException
https://docs.python.org/3.7/library/typing.html#typing.Optional
https://docs.python.org/3.7/library/typing.html#typing.Optional
https://docs.python.org/3.7/library/functions.html#bool

Facelift Documentation, Release 0.2.1

{
"data/encoders/dlib_face_recognition_resnet_model_v1.dat": [

"https://github.com/stephen-bunn/facelift/releases/download/v0.1.0/dlib_face_
→˓recognition_resnet_model_v1.dat",

"2316b25ae80acf4ad9b620b00071c423"
]

}

Examples

>>> from facelift._data import download_data
>>> download_data(display_progress=True)
https://... [123 / 456] 26.97%
Downloaded https://... to ./... (1234567890)

facelift._data.build_manifest(release_tag, *asset_filepaths)
Build the manifest content for a proposed release and defined assets.

Parameters

• release_tag (str) – The release tag the manifest is being built for.

• asset_filepaths (pathlib.Path) – Multiple existing local asset filepaths.

Raises

• FileNotFoundError – When a given asset filepath does not exist.

• ValueError – When a checksum cannot be calculated for one of the given filepaths.

Returns The manifest JSON-serializable dictionary

Return type Dict[str, Tuple[str, str]]

facelift._data.download_data(display_progress=False, release_tag=None, chunk_size=4096, val-
idate=True)

Download the data from a fetched remote release manifest.

Parameters

• display_progress (bool, optional) – Flag that indicates if you want to display
the download progress for assets. Defaults to False.

• release_tag (Optional[str], optional) – The release tag of the assets you
want to download. Defaults to None which will fetch the latest release assets.

• chunk_size (int, optional) – The chunk size to use when downloading assets.
Defaults to DOWNLOAD_CHUNK_SIZE.

• validate (bool, optional) – If False, will skip checksum validation for all down-
loaded assets. Defaults to True.

Raises

• FileExistsError – If a file already exists at one of the assets relative file locations.

• ValueError – If the downloaded assets fails checksum validation.

facelift._data.get_remote_manifest(release_tag=None)
Get the manifest content from a GitHub release.

70 Chapter 8. Project Reference

https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/pathlib.html#pathlib.Path
https://docs.python.org/3.7/library/exceptions.html#FileNotFoundError
https://docs.python.org/3.7/library/exceptions.html#ValueError
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/exceptions.html#FileExistsError
https://docs.python.org/3.7/library/exceptions.html#ValueError

Facelift Documentation, Release 0.2.1

Parameters release_tag (Optional[str], optional) – The release tag of the manifest
to fetch. Defaults to None which fetches the latest release manifest.

Returns The manifest JSON-serializable dictionary

Return type Dict[str, Tuple[str, str]]

8.1. Facelift Package 71

https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str

Facelift Documentation, Release 0.2.1

72 Chapter 8. Project Reference

PYTHON MODULE INDEX

f
facelift._data, 69
facelift.capture, 45
facelift.detect, 55
facelift.encode, 58
facelift.helpers, 61
facelift.magic, 54
facelift.render, 62
facelift.transform, 48
facelift.types, 43
facelift.window, 67

73

Facelift Documentation, Release 0.2.1

74 Python Module Index

INDEX

Symbols
__enter__() (facelift.window.opencv_window

method), 69
__exit__() (facelift.window.opencv_window

method), 69

A
adjust() (in module facelift.transform), 48
ANTI_ALIASED (facelift.render.LineType attribute), 63
AUTOSIZE (facelift.window.WindowStyle attribute), 67

B
BaseEncoder (class in facelift.encode), 58
BaseLandmarkDetector (class in facelift.detect), 55
BasicFaceDetector (class in facelift.detect), 57
BasicFaceEncoder (class in facelift.encode), 60
build_manifest() (in module facelift._data), 70

C
CENTER (facelift.render.Position attribute), 63
close() (facelift.window.opencv_window method), 69
compute_face_descriptor()

(facelift.types.Encoder method), 43
CONNECTED_4 (facelift.render.LineType attribute), 63
CONNECTED_8 (facelift.render.LineType attribute), 63
copy() (in module facelift.transform), 49
create() (facelift.window.opencv_window method),

69
crop() (in module facelift.transform), 49

D
DEFAULT (facelift.window.WindowStyle attribute), 67
DEFAULT_COLOR (in module facelift.render), 63
DEFAULT_ENCODING_JITTER (in module

facelift.encode), 58
DEFAULT_ENCODING_PADDING (in module

facelift.encode), 58
DEFAULT_FONT (in module facelift.render), 63
DEFAULT_INTERPOLATION (in module

facelift.transform), 48
DEFAULT_MAGIC_BUFFER_SIZE (in module

facelift.magic), 54

DEFAULT_NORMALIZED_FACE_SIZE (in module
facelift.helpers), 61

DEFAULT_NORMALIZED_LEFT_EYE_POSITION (in
module facelift.helpers), 61

DEFAULT_WINDOW_DELAY (in module
facelift.window), 67

DEFAULT_WINDOW_STEP_KEY (in module
facelift.window), 67

DEFAULT_WINDOW_TITLE (in module
facelift.window), 67

detector (facelift.detect.BaseLandmarkDetector at-
tribute), 55

Detector (in module facelift.types), 43
download_data() (in module facelift._data), 70
draw_contour() (in module facelift.render), 63
draw_line() (in module facelift.render), 64
draw_point() (in module facelift.render), 64
draw_points() (in module facelift.render), 65
draw_rectangle() (in module facelift.render), 65
draw_text() (in module facelift.render), 66

E
Encoder (class in facelift.types), 43
Encoding (in module facelift.types), 43
END (facelift.render.Position attribute), 63

F
Face (class in facelift.types), 44
FaceFeature (class in facelift.types), 44
facelift._data

module, 69
facelift.capture

module, 45
facelift.detect

module, 55
facelift.encode

module, 58
facelift.helpers

module, 61
facelift.magic

module, 54
facelift.render

75

Facelift Documentation, Release 0.2.1

module, 62
facelift.transform

module, 48
facelift.types

module, 43
facelift.window

module, 67
file_capture() (in module facelift.capture), 45
FILLED (facelift.render.LineType attribute), 63
flip() (in module facelift.transform), 50
FOREHEAD (facelift.types.FaceFeature attribute), 44
Frame (in module facelift.types), 43
FREE_RATIO (facelift.window.WindowStyle attribute),

68
FullFaceDetector (class in facelift.detect), 57
FULLSCREEN (facelift.window.WindowStyle attribute),

68

G
get_detector() (in module facelift.detect), 57
get_encoder() (in module facelift.encode), 60
get_encoding() (facelift.encode.BaseEncoder

method), 58
get_encoding() (facelift.encode.BasicFaceEncoder

method), 60
get_eye_angle() (in module facelift.helpers), 61
get_eye_center_position() (in module

facelift.helpers), 61
get_eye_deltas() (in module facelift.helpers), 61
get_eye_distance() (in module facelift.helpers),

61
get_eye_positions() (in module facelift.helpers),

61
get_landmarks() (facelift.detect.BaseLandmarkDetector

method), 55
get_landmarks() (facelift.detect.FullFaceDetector

method), 57
get_media_type() (in module facelift.magic), 54
get_mimetype() (in module facelift.magic), 54
get_normalized_frame() (in module

facelift.helpers), 62
get_predictor() (in module facelift.detect), 57
get_remote_manifest() (in module

facelift._data), 70
grayscale() (in module facelift.transform), 50
GUI_EXPANDED (facelift.window.WindowStyle at-

tribute), 68
GUI_NORMAL (facelift.window.WindowStyle attribute),

68

I
IMAGE (facelift.types.MediaType attribute), 44
INNER_MOUTH (facelift.types.FaceFeature attribute), 44

iter_faces() (facelift.detect.BaseLandmarkDetector
method), 55

iter_media_frames() (in module facelift.capture),
46

iter_stream_frames() (in module
facelift.capture), 46

J
JAW (facelift.types.FaceFeature attribute), 44

K
KEEP_RATIO (facelift.window.WindowStyle attribute),

68

L
landmark_slices()

(facelift.detect.BaseLandmarkDetector prop-
erty), 56

LEFT_EYE (facelift.types.FaceFeature attribute), 44
LEFT_EYEBROW (facelift.types.FaceFeature attribute),

44
LineType (class in facelift.render), 63

M
media_capture() (in module facelift.capture), 47
MediaType (class in facelift.types), 44
model_filepath() (facelift.detect.BaseLandmarkDetector

property), 56
model_filepath() (facelift.encode.BaseEncoder

property), 59
module

facelift._data, 69
facelift.capture, 45
facelift.detect, 55
facelift.encode, 58
facelift.helpers, 61
facelift.magic, 54
facelift.render, 62
facelift.transform, 48
facelift.types, 43
facelift.window, 67

MOUTH (facelift.types.FaceFeature attribute), 44

N
NOSE (facelift.types.FaceFeature attribute), 44

O
opencv_window (class in facelift.window), 68
OPENGL (facelift.window.WindowStyle attribute), 68

P
PartialFaceDetector (class in facelift.detect), 57
Point (in module facelift.types), 43

76 Index

Facelift Documentation, Release 0.2.1

PointSequence (in module facelift.types), 43
Position (class in facelift.render), 63
predictor (facelift.detect.BaseLandmarkDetector at-

tribute), 56
Predictor (in module facelift.types), 43

R
rectangle() (facelift.types.Face property), 44
render() (facelift.window.opencv_window method),

69
resize() (in module facelift.transform), 50
rgb() (in module facelift.transform), 51
RIGHT_EYE (facelift.types.FaceFeature attribute), 44
RIGHT_EYEBROW (facelift.types.FaceFeature attribute),

44
rotate() (in module facelift.transform), 52

S
scale() (in module facelift.transform), 52
score_encoding() (facelift.encode.BaseEncoder

method), 59
shape_to_points()

(facelift.detect.BaseLandmarkDetector static
method), 56

slices_to_landmarks()
(facelift.detect.BaseLandmarkDetector static
method), 56

START (facelift.render.Position attribute), 63
STREAM (facelift.types.MediaType attribute), 45
stream_capture() (in module facelift.capture), 47

T
translate() (in module facelift.transform), 53

V
VIDEO (facelift.types.MediaType attribute), 45

W
WindowStyle (class in facelift.window), 67

Index 77

	Getting Started
	Usage
	Contributing
	Code of Conduct
	Changelog
	License
	Attribution
	Project Reference
	Python Module Index
	Index

